Toolset
Group multiple Tools into a single unit.
Mandatory init variables | "tools": A list of tools |
API reference | Toolset |
GitHub link | https://github.com/deepset-ai/haystack/blob/main/haystack/tools/toolset.py |
Overview
A Toolset
groups multiple Tool instances into a single manageable unit. It simplifies passing tools to components like Chat Generators, ToolInvoker
, or Agent
, and supports filtering, serialization, and reuse.
Additionally, by subclassing Toolset
, you can create implementations that dynamically load tools from external sources like OpenAPI URLs, MCP servers, or other resources.
Initializing Toolset
Here’s how to initialize Toolset
with Tool. Alternatively, you can use ComponentTool or MCPTool in Toolset
as Tool instances.
from haystack.tools import Tool, Toolset
# Define math functions
def add_numbers(a: int, b: int) -> int:
return a + b
def subtract_numbers(a: int, b: int) -> int:
return a - b
# Create tools with proper schemas
add_tool = Tool(
name="add",
description="Add two numbers",
parameters={
"type": "object",
"properties": {
"a": {"type": "integer"},
"b": {"type": "integer"}
},
"required": ["a", "b"]
},
function=add_numbers
)
subtract_tool = Tool(
name="subtract",
description="Subtract b from a",
parameters={
"type": "object",
"properties": {
"a": {"type": "integer"},
"b": {"type": "integer"}
},
"required": ["a", "b"]
},
function=subtract_numbers
)
# Create a toolset with the math tools
math_toolset = Toolset([add_tool, subtract_tool])
Adding New Tools to Toolset
def multiply_numbers(a: int, b: int) -> int:
return a * b
multiply_tool = Tool(
name="multiply",
description="Multiply two numbers",
parameters={
"type": "object",
"properties": {
"a": {"type": "integer"},
"b": {"type": "integer"}
},
"required": ["a", "b"]
},
function=multiply_numbers
)
math_toolset.add(multiply_tool)
# or, you can merge toolsets together
math_toolset.add(another_toolset)
Usage
You can use Toolset
wherever you can use Tools in Haystack.
With ChatGenerator and ToolInvoker
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.components.tools import ToolInvoker
from haystack.dataclasses import ChatMessage
# Create a toolset with the math tools
math_toolset = Toolset([add_tool, subtract_tool])
chat_generator = OpenAIChatGenerator(model="gpt-4o-mini", tools=math_toolset)
# Initialize the Tool Invoker with the weather tool
tool_invoker = ToolInvoker(tools=math_toolset)
user_message = ChatMessage.from_user("What is 10 minus 5?")
replies = chat_generator.run(messages=[user_message])["replies"]
print(f"assistant message: {replies}")
# If the assistant message contains a tool call, run the tool invoker
if replies[0].tool_calls:
tool_messages = tool_invoker.run(messages=replies)["tool_messages"]
print(f"tool result: {tool_messages[0].tool_call_result.result}")
Output:
assistant message: [ChatMessage(_role=<ChatRole.ASSISTANT: 'assistant'>, _content=[ToolCall(tool_name='subtract', arguments={'a': 10, 'b': 5}, id='call_awGa5q7KtQ9BrMGPTj6IgEH1')], _name=None, _meta={'model': 'gpt-4o-mini-2024-07-18', 'index': 0, 'finish_reason': 'tool_calls', 'usage': {'completion_tokens': 18, 'prompt_tokens': 75, 'total_tokens': 93, 'completion_tokens_details': CompletionTokensDetails(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0), 'prompt_tokens_details': PromptTokensDetails(audio_tokens=0, cached_tokens=0)}})]
tool result: 5
In a Pipeline
from haystack import Pipeline
from haystack.components.converters import OutputAdapter
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.components.tools import ToolInvoker
from haystack.dataclasses import ChatMessage
math_toolset = Toolset([add_tool, subtract_tool])
pipeline = Pipeline()
pipeline.add_component("llm", OpenAIChatGenerator(model="gpt-4o-mini", tools=math_toolset))
pipeline.add_component("tool_invoker", ToolInvoker(tools=math_toolset))
pipeline.add_component(
"adapter",
OutputAdapter(
template="{{ initial_msg + initial_tool_messages + tool_messages }}",
output_type=list[ChatMessage],
unsafe=True,
),
)
pipeline.add_component("response_llm", OpenAIChatGenerator(model="gpt-4o-mini"))
pipeline.connect("llm.replies", "tool_invoker.messages")
pipeline.connect("llm.replies", "adapter.initial_tool_messages")
pipeline.connect("tool_invoker.tool_messages", "adapter.tool_messages")
pipeline.connect("adapter.output", "response_llm.messages")
user_input = "What is 2+2?"
user_input_msg = ChatMessage.from_user(text=user_input)
result = pipeline.run({"llm": {"messages": [user_input_msg]}, "adapter": {"initial_msg": [user_input_msg]}})
print(result["response_llm"]["replies"][0].text)
Output:
2 + 2 equals 4.
With the Agent
from haystack.components.agents import Agent
from haystack.dataclasses import ChatMessage
from haystack.components.generators.chat import OpenAIChatGenerator
agent = Agent(
chat_generator=OpenAIChatGenerator(model="gpt-4o-mini"),
tools=math_toolset
)
agent.warm_up()
response = agent.run(messages=[ChatMessage.from_user("What is 4 + 2?")])
print(response["messages"][-1].text)
Output:
4 + 2 equals 6.
Updated about 15 hours ago