WatsonxDocumentEmbedder
The vectors computed by this component are necessary to perform embedding retrieval on a collection of documents. At retrieval time, the vector that represents the query is compared with those of the documents to find the most similar or relevant documents.
Most common position in a pipeline | Before a DocumentWriter in an indexing pipeline |
Mandatory init variables | "api_key": The IBM Cloud API key. Can be set with WATSONX_API_KEY env var."project_id": The IBM Cloud project ID. Can be set with WATSONX_PROJECT_ID env var. |
Mandatory run variables | "documents": A list of documents to be embedded |
Output variables | "documents": A list of documents (enriched with embeddings) "meta": A dictionary of metadata strings |
API reference | Watsonx |
GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/watsonx |
Overview
WatsonxDocumentEmbedder
enriches the metadata of documents with an embedding of their content. To embed a string, you should use the WatsonxTextEmbedder
.
The component supports IBM watsonx.ai embedding models such as ibm/slate-30m-english-rtrvr
and similar. The default model is ibm/slate-30m-english-rtrvr
. This list of all supported models can be found in IBM's model documentation.
To start using this integration with Haystack, install it with:
pip install watsonx-haystack
The component uses WATSONX_API_KEY
and WATSONX_PROJECT_ID
environment variables by default. Otherwise, you can pass API credentials at initialization with api_key
and project_id
:
embedder = WatsonxDocumentEmbedder(
api_key=Secret.from_token("<your-api-key>"),
project_id=Secret.from_token("<your-project-id>")
)
To get IBM Cloud credentials, head over to https://cloud.ibm.com/.
Embedding Metadata
Text documents often come with a set of metadata. If they are distinctive and semantically meaningful, you can embed them along with the text of the document to improve retrieval.
You can do this by using the Document Embedder:
from haystack import Document
from haystack_integrations.components.embedders.watsonx.document_embedder import WatsonxDocumentEmbedder
from haystack.utils import Secret
doc = Document(content="some text", meta={"title": "relevant title", "page number": 18})
embedder = WatsonxDocumentEmbedder(
api_key=Secret.from_env_var("WATSONX_API_KEY"),
project_id=Secret.from_env_var("WATSONX_PROJECT_ID"),
meta_fields_to_embed=["title"]
)
docs_w_embeddings = embedder.run(documents=[doc])["documents"]
Usage
Install the watsonx-haystack
package to use the WatsonxDocumentEmbedder
:
pip install watsonx-haystack
On its own
Remember to set WATSONX_API_KEY
and WATSONX_PROJECT_ID
as environment variables first, or pass them in directly.
Here is how you can use the component on its own:
from haystack import Document
from haystack_integrations.components.embedders.watsonx.document_embedder import WatsonxDocumentEmbedder
doc = Document(content="I love pizza!")
embedder = WatsonxDocumentEmbedder()
result = embedder.run([doc])
print(result['documents'][0].embedding)
# [-0.453125, 1.2236328, 2.0058594, 0.67871094...]
In a pipeline
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.writers import DocumentWriter
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
from haystack_integrations.components.embedders.watsonx.document_embedder import WatsonxDocumentEmbedder
from haystack_integrations.components.embedders.watsonx.text_embedder import WatsonxTextEmbedder
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
documents = [Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities")]
indexing_pipeline = Pipeline()
indexing_pipeline.add_component("embedder", WatsonxDocumentEmbedder())
indexing_pipeline.add_component("writer", DocumentWriter(document_store=document_store))
indexing_pipeline.connect("embedder", "writer")
indexing_pipeline.run({"embedder": {"documents": documents}})
query_pipeline = Pipeline()
query_pipeline.add_component("text_embedder", WatsonxTextEmbedder())
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
query = "Who lives in Berlin?"
result = query_pipeline.run({"text_embedder":{"text": query}})
print(result['retriever']['documents'][0])
# Document(id=..., text: 'My name is Wolfgang and I live in Berlin')
Updated 1 day ago