DocumentationAPI Reference📓 Tutorials🧑‍🍳 Cookbook🤝 Integrations💜 Discord🎨 Studio
Documentation

SagemakerGenerator

This component enables text generation using LLMs deployed on Amazon Sagemaker.

Most common position in a pipelineAfter a PromptBuilder
Mandatory init variables"model": The model to use

"aws_access_key_id": AWS access key ID. Can be set with AWS_ACCESS_KEY_ID env var.

"aws_secret_access_key": AWS secret access key. Can be set with AWS_SECRET_ACCESS_KEY env var.
Mandatory run variables“prompt”: A string containing the prompt for the LLM
Output variables“replies”: A list of strings with all the replies generated by the LLM

”meta”: A list of dictionaries with the metadata associated with each reply, such as token count, finish reason, and so on
API referenceAmazon Sagemaker
GitHub linkhttps://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/amazon_sagemaker

SagemakerGenerator allows you to make use of models deployed on AWS SageMaker.

Parameters Overview

SagemakerGenerator needs AWS credentials to work. Set the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables.

You also need to specify your Sagemaker endpoint at initialization time for the component to work. Pass the endpoint name to the model parameter like this:

generator = SagemakerGenerator(model="jumpstart-dft-hf-llm-falcon-7b-instruct-bf16")

Additionally, you can pass any text generation parameters valid for your specific model directly to SagemakerGenerator using the generation_kwargs parameter, both at initialization and to run() method.

If your model also needs custom attributes, pass those as a dictionary at initialization time by setting the aws_custom_attributes parameter.

One notable family of models that needs these custom parameters is Llama2, which needs to be initialized with {"accept_eula": True} :

generator = SagemakerGenerator(
	model="jumpstart-dft-meta-textgenerationneuron-llama-2-7b",
	aws_custom_attributes={"accept_eula": True}
)

Usage

You need to install amazon-sagemaker-haystack package to use the SagemakerGenerator:

pip install amazon-sagemaker-haystack

On its own

Basic usage:

from haystack_integrations.components.generators.amazon_sagemaker import SagemakerGenerator

client = SagemakerGenerator(model="jumpstart-dft-hf-llm-falcon-7b-instruct-bf16")
client.warm_up()
response = client.run("Briefly explain what NLP is in one sentence.")
print(response)

>>> {'replies': ["Natural Language Processing (NLP) is a subfield of artificial intelligence and computational linguistics that focuses on the interaction between computers and human languages..."],
 'metadata': [{}]}

In a pipeline

In a RAG pipeline:

from haystack_integrations.components.generators.amazon_sagemaker import SagemakerGenerator
from haystack import Pipeline
from haystack.components.retrievers.in_memory import InMemoryBM25Retriever
from haystack.components.builders import PromptBuilder

template = """
Given the following information, answer the question.

Context: 
{% for document in documents %}
    {{ document.content }}
{% endfor %}

Question: What's the official language of {{ country }}?
"""
pipe = Pipeline()

pipe.add_component("retriever", InMemoryBM25Retriever(document_store=docstore))
pipe.add_component("prompt_builder", PromptBuilder(template=template))
pipe.add_component("llm", SagemakerGenerator(model="jumpstart-dft-hf-llm-falcon-7b-instruct-bf16"))
pipe.connect("retriever", "prompt_builder.documents")
pipe.connect("prompt_builder", "llm")

pipe.run({
    "prompt_builder": {
        "country": "France"
    }
})

Related Links

Check out the API reference in the GitHub repo or in our docs: