GoogleGenAITextEmbedder
This component transforms a string into a vector that captures its semantics using a Google AI embedding models. When you perform embedding retrieval, you use this component to transform your query into a vector. Then, the embedding Retriever looks for similar or relevant documents.
Most common position in a pipeline | Before an embedding Retriever in a query/RAG pipeline |
Mandatory init variables | "api_key": The Google API key. Can be set with GOOGLE_API_KEY or GEMINI_API_KEY env var. |
Mandatory run variables | "text": A string |
Output variables | "embedding": A list of float numbers "meta": A dictionary of metadata |
API reference | Google AI |
GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/google_genai |
Overview
GoogleGenAITextEmbedder
embeds a simple string (such as a query) into a vector. For embedding lists of documents, use the GoogleGenAIDocumentEmbedder
, which enriches the document with the computed embedding, also known as vector.
The component supports the following Google AI models:
text-embedding-004
(default)text-embedding-004-v2
To start using this integration with Haystack, install it with:
pip install google-genai-haystack
The component uses a GOOGLE_API_KEY
or GEMINI_API_KEY
environment variable by default. Otherwise, you can pass an API key at initialization with a Secret and Secret.from_token
static method:
embedder = GoogleGenAITextEmbedder(api_key=Secret.from_token("<your-api-key>"))
To get a Google AI API key, head over to https://ai.google.dev/.
Usage
On its own
Here is how you can use the component on its own. You'll need to pass in your Google API key via Secret or set it as an environment variable called GOOGLE_API_KEY
or GEMINI_API_KEY
. The examples below assume you've set the environment variable.
from haystack_integrations.components.embedders.google_genai import GoogleGenAITextEmbedder
text_to_embed = "I love pizza!"
text_embedder = GoogleGenAITextEmbedder()
print(text_embedder.run(text_to_embed))
# {'embedding': [0.017020374536514282, -0.023255806416273117, ...],
# 'meta': {'model': 'text-embedding-004',
# 'usage': {'prompt_tokens': 4, 'total_tokens': 4}}}
In a pipeline
from haystack import Document
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack_integrations.components.embedders.google_genai import GoogleGenAITextEmbedder
from haystack_integrations.components.embedders.google_genai import GoogleGenAIDocumentEmbedder
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
documents = [Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities")]
document_embedder = GoogleGenAIDocumentEmbedder()
documents_with_embeddings = document_embedder.run(documents)['documents']
document_store.write_documents(documents_with_embeddings)
query_pipeline = Pipeline()
query_pipeline.add_component("text_embedder", GoogleGenAITextEmbedder())
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
query = "Who lives in Berlin?"
result = query_pipeline.run({"text_embedder":{"text": query}})
print(result['retriever']['documents'][0])
# Document(id=..., content: 'My name is Wolfgang and I live in Berlin')
Updated 1 day ago