DocumentationAPI Reference📓 Tutorials🧑‍🍳 Cookbook🤝 Integrations💜 Discord


Use this Retriever with any Document Store to get the Documents that match specific filters.

Folder Path/retrievers/
Most common Position in a PipelineAt the beginning of a Pipeline
Mandatory Input variables“filters”: a dictionary of filters in the same syntax supported by the Document Stores.
Output variables“documents”: all the Documents that match these filters.


FilterRetriever retrieves Documents that match the provided filters.

It’s a special kind of Retriever – it can work with all Document Stores instead of being specialized to work with only one.

However, as every other Retriever, it needs some Document Store at initialization time, and it will perform filtering on the content of that instance only.

Therefore, it can be used as any other Retriever in a Pipeline.

Pay attention when using FilterRetriever on a Document Store that contains many Documents, as FilterRetriever will return all documents that match the filters. The run command with no filters can easily overwhelm other components in the Pipeline (for example, Generators):{})

Another thing to note is that FilterRetriever does not score your Documents or rank them in any way. If you need to rank the Documents by similarity to a query, consider using Ranker components.


On its own

from haystack import Document
from haystack.components.retrievers import FilterRetriever
from haystack.document_stores.in_memory import InMemoryDocumentStore

docs = [
	Document(content="Python is a popular programming language", meta={"lang": "en"}),
	Document(content="python ist eine beliebte Programmiersprache", meta={"lang": "de"}),

doc_store = InMemoryDocumentStore()
retriever = FilterRetriever(doc_store)
result ={"field": "lang", "operator": "==", "value": "en"})

assert "documents" in result
assert len(result["documents"]) == 1
assert result["documents"][0].content == "Python is a popular programming language"

In a RAG pipeline

Set your OPENAI_API_KEY as an environment variable and then run the following code:

from haystack.components.retrievers.filter_retriever import FilterRetriever
from haystack.document_stores.in_memory import InMemoryDocumentStore

from haystack import Document, Pipeline
from import AnswerBuilder
from import PromptBuilder
from haystack.components.generators import OpenAIGenerator
from haystack.document_stores.types import DuplicatePolicy

import os
api_key = os.environ['OPENAI_API_KEY']

document_store = InMemoryDocumentStore()
documents = [
		Document(content="Mark lives in Berlin.", meta={"year": 2018}),
		Document(content="Mark lives in Paris.", meta={"year": 2021}),
		Document(content="Mark is Danish.", meta={"year": 2021}),
		Document(content="Mark lives in New York.", meta={"year": 2023}),

# Create a RAG query pipeline
prompt_template = """
    Given these documents, answer the question.\nDocuments:
    {% for doc in documents %}
        {{ doc.content }}
    {% endfor %}

    \nQuestion: {{question}}

rag_pipeline = Pipeline()
rag_pipeline.add_component(name="retriever", instance=FilterRetriever(document_store=document_store))
rag_pipeline.add_component(instance=PromptBuilder(template=prompt_template), name="prompt_builder")
rag_pipeline.add_component(instance=OpenAIGenerator(api_key=api_key), name="llm")
rag_pipeline.connect("retriever", "prompt_builder.documents")
rag_pipeline.connect("prompt_builder", "llm")

result =
    "retriever": {"filters": {"field": "year", "operator": "==", "value": 2021}},
    "prompt_builder": {"question": "Where does Mark live?"},

Here’s an example output you might get:

According to the provided documents, Mark lives in Paris.

Related Links

See the parameters details in our API reference: