CohereChatGenerator
CohereChatGenerator enables chat completions using Cohere's large language models (LLMs).
| Most common position in a pipeline | After a ChatPromptBuilder |
| Mandatory init variables | "api_key": The Cohere API key. Can be set with COHERE_API_KEY or CO_API_KEY env var. |
| Mandatory run variables | “messages” A list of ChatMessage objects |
| Output variables | "replies": A list of ChatMessage objects”meta”: A list of dictionaries with the metadata associated with each reply, such as token count, finish reason, and so on |
| API reference | Cohere |
| GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/cohere |
This integration supports Cohere chat models such as command,command-r and comman-r-plus. Check out the most recent full list in Cohere documentation.
Overview
CohereChatGenerator needs a Cohere API key to work. You can set this key in:
- The
api_keyinit parameter using Secret API - The
COHERE_API_KEYenvironment variable (recommended)
Then, the component needs a prompt to operate, but you can pass any text generation parameters valid for the Co.chat method directly to this component using the generation_kwargs parameter, both at initialization and to run() method. For more details on the parameters supported by the Cohere API, refer to the Cohere documentation.
Finally, the component needs a list of ChatMessage objects to operate. ChatMessage is a data class that contains a message, a role (who generated the message, such as user, assistant, system, function), and optional metadata.
Streaming
This Generator supports streaming the tokens from the LLM directly in output. To do so, pass a function to the streaming_callback init parameter.
Usage
You need to install cohere-haystack package to use the CohereChatGenerator:
pip install cohere-haystack
On its own
from haystack_integrations.components.generators.cohere import CohereChatGenerator
from haystack.dataclasses import ChatMessage
generator = CohereChatGenerator()
message = ChatMessage.from_user("What's Natural Language Processing? Be brief.")
print(generator.run([message]))
In a Pipeline
You can also use CohereChatGenerator to use cohere chat models in your pipeline.
from haystack import Pipeline
from haystack.components.builders import ChatPromptBuilder
from haystack.dataclasses import ChatMessage
from haystack_integrations.components.generators.cohere import CohereChatGenerator
from haystack.utils import Secret
pipe = Pipeline()
pipe.add_component("prompt_builder", ChatPromptBuilder())
pipe.add_component("llm", CohereChatGenerator())
pipe.connect("prompt_builder", "llm")
country = "Germany"
system_message = ChatMessage.from_system("You are an assistant giving out valuable information to language learners.")
messages = [system_message, ChatMessage.from_user("What's the official language of {{ country }}?")]
res = pipe.run(data={"prompt_builder": {"template_variables": {"country": country}, "template": messages}})
print(res)
Updated about 1 year ago
