SnowflakeTableRetriever
Connects to a Snowflake database to execute an SQL query.
Most common position in a pipeline | Before a PromptBuilder |
Mandatory init variables | “user”: User's login ”account”: Snowflake account identifier ”api_key”: Snowflake account password. Can be set with SNOWFLAKE_API_KEY env var |
Mandatory run variables | “query”: An SQL query to execute |
Output variables | “dataframe”: The resulting Pandas dataframe version of the table |
API reference | Snowflake |
GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/snowflake |
Overview
The SnowflakeTableRetriever
connects to a Snowflake database and retrieves data using an SQL query. It then returns a Pandas dataframe and a Markdown version of the table:
To start using the integration, install it with:
pip install snowflake-haystack
Usage
On its own
from haystack_integrations.components.retrievers.snowflake import SnowflakeTableRetriever
snowflake = SnowflakeRetriever(
user="<ACCOUNT-USER>",
account="<ACCOUNT-IDENTIFIER>",
api_key=Secret.from_env_var("SNOWFLAKE_API_KEY"),
warehouse="<WAREHOUSE-NAME>",
)
snowflake.run(query="""select * from table limit 10;"""")
In a pipeline
In the following pipeline example, the PromptBuilder
is using the table received from the SnowflakeTableRetriever
to create a prompt template and pass it on to an LLM:
from haystack import Pipeline
from haystack.utils import Secret
from haystack.components.builders import PromptBuilder
from haystack.components.generators import OpenAIGenerator
from haystack_integrations.components.retrievers.snowflake import SnowflakeTableRetriever
executor = SnowflakeTableRetriever(
user="<ACCOUNT-USER>",
account="<ACCOUNT-IDENTIFIER>",
api_key=Secret.from_env_var("SNOWFLAKE_API_KEY"),
warehouse="<WAREHOUSE-NAME>",
)
pipeline = Pipeline()
pipeline.add_component("builder", PromptBuilder(template="Describe this table: {{ table }}"))
pipeline.add_component("snowflake", executor)
pipeline.add_component("llm", OpenAIGenerator(model="gpt-4o"))
pipeline.connect("snowflake.table", "builder.table")
pipeline.connect("builder", "llm")
pipeline.run(data={"query": "select employee, salary from table limit 10;"})
Updated 19 days ago