DocumentationAPI Reference📓 Tutorials🧑‍🍳 Cookbook🤝 Integrations💜 Discord🎨 Studio
Documentation

SnowflakeTableRetriever

Connects to a Snowflake database to execute an SQL query.

Most common position in a pipelineBefore a PromptBuilder
Mandatory init variables“user”: User's login

”account”: Snowflake account identifier

”api_key”: Snowflake account password. Can be set with SNOWFLAKE_API_KEY env var
Mandatory run variables“query”: An SQL query to execute
Output variables“dataframe”: The resulting Pandas dataframe version of the table
API referenceSnowflake
GitHub linkhttps://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/snowflake

Overview

The SnowflakeTableRetriever connects to a Snowflake database and retrieves data using an SQL query. It then returns a Pandas dataframe and a Markdown version of the table:

To start using the integration, install it with:

pip install snowflake-haystack

Usage

On its own

from haystack_integrations.components.retrievers.snowflake import SnowflakeTableRetriever

snowflake = SnowflakeRetriever(
    user="<ACCOUNT-USER>",
    account="<ACCOUNT-IDENTIFIER>",
    api_key=Secret.from_env_var("SNOWFLAKE_API_KEY"),
    warehouse="<WAREHOUSE-NAME>",
)

snowflake.run(query="""select * from table limit 10;"""")

In a pipeline

In the following pipeline example, the PromptBuilder is using the table received from the SnowflakeTableRetriever to create a prompt template and pass it on to an LLM:

from haystack import Pipeline
from haystack.utils import Secret
from haystack.components.builders import PromptBuilder
from haystack.components.generators import OpenAIGenerator
from haystack_integrations.components.retrievers.snowflake import SnowflakeTableRetriever

executor = SnowflakeTableRetriever(
    user="<ACCOUNT-USER>",
    account="<ACCOUNT-IDENTIFIER>",
    api_key=Secret.from_env_var("SNOWFLAKE_API_KEY"),
    warehouse="<WAREHOUSE-NAME>",
)

pipeline = Pipeline()
pipeline.add_component("builder", PromptBuilder(template="Describe this table: {{ table }}"))
pipeline.add_component("snowflake", executor)
pipeline.add_component("llm", OpenAIGenerator(model="gpt-4o"))

pipeline.connect("snowflake.table", "builder.table")
pipeline.connect("builder", "llm")

pipeline.run(data={"query": "select employee, salary from table limit 10;"})