DocumentationAPI Reference📓 Tutorials🧑‍🍳 Cookbook🤝 Integrations💜 Discord🎨 Studio
Documentation

CSVDocumentCleaner

Use CSVDocumentCleaner to clean CSV documents by removing empty rows and columns while preserving specific ignored rows and columns. It processes CSV content stored in documents and helps standardize data for further analysis.

Most common position in a pipelineIn indexing pipelines after Converters , before Embedders or Writers
Mandatory run variables"documents": A list of documents containing CSV content
Output variables"documents": A list of cleaned CSV documents
API referencePreProcessors
GitHub linkhttps://github.com/deepset-ai/haystack/blob/main/haystack/components/preprocessors/csv_document_cleaner.py

Overview

CSVDocumentCleaner expects a list of Document objects as input, each containing CSV-formatted content as text. It cleans the data by removing fully empty rows and columns while allowing users to specify the number of rows and columns to be preserved before cleaning.

Parameters

  • ignore_rows: Number of rows to ignore from the top of the CSV table before processing. If any columns are removed, the same columns will be dropped from the ignored rows.
  • ignore_columns: Number of columns to ignore from the left of the CSV table before processing. If any rows are removed, the same rows will be dropped from the ignored columns.
  • remove_empty_rows: Whether to remove entirely empty rows.
  • remove_empty_columns: Whether to remove entirely empty columns.
  • keep_id: Whether to retain the original document ID in the output document.

Cleaning Process

The CSVDocumentCleaner algorithm follows these steps:

  1. Reads each document's content as a CSV table using pandas.
  2. Retains the specified number of ignore_rows from the top and ignore_columns from the left.
  3. Drops any rows and columns that are entirely empty (contain only NaN values).
  4. If columns are dropped, they are also removed from ignored rows.
  5. If rows are dropped, they are also removed from ignored columns.
  6. Reattaches the remaining ignored rows and columns to maintain their original positions.
  7. Returns the cleaned CSV content as a new Document object.

Usage

On its own

You can use CSVDocumentCleaner independently to clean up CSV documents:

from haystack import Document
from haystack.components.preprocessors import CSVDocumentCleaner

cleaner = CSVDocumentCleaner(ignore_rows=1, ignore_columns=0)

documents = [Document(content="""col1,col2,col3\n,,\na,b,c\n,,""" )]
cleaned_docs = cleaner.run(documents=documents)

In a pipeline

from pathlib import Path
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.converters import XLSXToDocument
from haystack.components.preprocessors import CSVDocumentCleaner
from haystack.components.writers import DocumentWriter

document_store = InMemoryDocumentStore()
p = Pipeline()
p.add_component(instance=XLSXToDocument(), name="xlsx_file_converter")
p.add_component(instance=CSVDocumentCleaner(ignore_rows=1, ignore_columns=1), name="csv_cleaner")
p.add_component(instance=DocumentWriter(document_store=document_store), name="writer")

p.connect("xlsx_file_converter.documents", "csv_cleaner.documents")
p.connect("csv_cleaner.documents", "writer.documents")

p.run({"xlsx_file_converter": {"sources": [Path("your_xlsx_file.xlsx")]}})

This ensures that CSV documents are properly cleaned before further processing or storage.