CSVDocumentCleaner
Use CSVDocumentCleaner
to clean CSV documents by removing empty rows and columns while preserving specific ignored rows and columns. It processes CSV content stored in documents and helps standardize data for further analysis.
Most common position in a pipeline | In indexing pipelines after Converters , before Embedders or Writers |
Mandatory run variables | "documents": A list of documents containing CSV content |
Output variables | "documents": A list of cleaned CSV documents |
API reference | PreProcessors |
GitHub link | https://github.com/deepset-ai/haystack/blob/main/haystack/components/preprocessors/csv_document_cleaner.py |
Overview
CSVDocumentCleaner
expects a list of Document
objects as input, each containing CSV-formatted content as text. It cleans the data by removing fully empty rows and columns while allowing users to specify the number of rows and columns to be preserved before cleaning.
Parameters
ignore_rows
: Number of rows to ignore from the top of the CSV table before processing. If any columns are removed, the same columns will be dropped from the ignored rows.ignore_columns
: Number of columns to ignore from the left of the CSV table before processing. If any rows are removed, the same rows will be dropped from the ignored columns.remove_empty_rows
: Whether to remove entirely empty rows.remove_empty_columns
: Whether to remove entirely empty columns.keep_id
: Whether to retain the original document ID in the output document.
Cleaning Process
The CSVDocumentCleaner
algorithm follows these steps:
- Reads each document's content as a CSV table using pandas.
- Retains the specified number of
ignore_rows
from the top andignore_columns
from the left. - Drops any rows and columns that are entirely empty (contain only NaN values).
- If columns are dropped, they are also removed from ignored rows.
- If rows are dropped, they are also removed from ignored columns.
- Reattaches the remaining ignored rows and columns to maintain their original positions.
- Returns the cleaned CSV content as a new
Document
object.
Usage
On its own
You can use CSVDocumentCleaner
independently to clean up CSV documents:
from haystack import Document
from haystack.components.preprocessors import CSVDocumentCleaner
cleaner = CSVDocumentCleaner(ignore_rows=1, ignore_columns=0)
documents = [Document(content="""col1,col2,col3\n,,\na,b,c\n,,""" )]
cleaned_docs = cleaner.run(documents=documents)
In a pipeline
from pathlib import Path
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.converters import XLSXToDocument
from haystack.components.preprocessors import CSVDocumentCleaner
from haystack.components.writers import DocumentWriter
document_store = InMemoryDocumentStore()
p = Pipeline()
p.add_component(instance=XLSXToDocument(), name="xlsx_file_converter")
p.add_component(instance=CSVDocumentCleaner(ignore_rows=1, ignore_columns=1), name="csv_cleaner")
p.add_component(instance=DocumentWriter(document_store=document_store), name="writer")
p.connect("xlsx_file_converter.documents", "csv_cleaner.documents")
p.connect("csv_cleaner.documents", "writer.documents")
p.run({"xlsx_file_converter": {"sources": [Path("your_xlsx_file.xlsx")]}})
This ensures that CSV documents are properly cleaned before further processing or storage.
Updated 6 days ago