WatsonxGenerator
Use this component with IBM watsonx models like granite-3-2b-instruct
for simple text generation tasks.
Most common position in a pipeline | After a PromptBuilder |
Mandatory init variables | "api_key": An IBM Cloud API key. Can be set with WATSONX_API_KEY env var."project_id": An IBM Cloud project ID. Can be set with WATSONX_PROJECT_ID env var. |
Mandatory run variables | "prompt": A string containing the prompt for the LLM |
Output variables | "replies": A list of strings with all the replies generated by the LLM "meta": A list of dictionaries with the metadata associated with each reply, such as token count, finish reason, and so on |
API reference | Watsonx |
GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/watsonx |
Overview
This integration supports IBM watsonx.ai foundation models such as ibm/granite-13b-chat-v2
, ibm/llama-2-70b-chat
, ibm/llama-3-70b-instruct
, and similar. These models provide high-quality text generation capabilities through IBM's cloud platform. Check out the most recent full list in the IBM watsonx.ai documentation.
Parameters
WatsonxGenerator
needs IBM Cloud credentials to work. You can provide these in:
- The
WATSONX_API_KEY
environment variable (recommended) - The
WATSONX_PROJECT_ID
environment variable (recommended) - The
api_key
andproject_id
init parameters using Haystack Secret API:Secret.from_token("your-api-key-here")
Set your preferred IBM watsonx.ai model in the model
parameter when initializing the component. The default model is ibm/granite-3-2b-instruct
.
WatsonxGenerator
requires a prompt to generate text, but you can pass any text generation parameters available in the IBM watsonx.ai API directly to this component using the generation_kwargs
parameter, both at initialization and to run()
method. For more details on the parameters supported by the IBM watsonx.ai API, see IBM watsonx.ai documentation.
The component also supports system prompts that can be set at initialization or passed during runtime to provide context or instructions for the generation.
Finally, the component run method requires a single string prompt to generate text.
Streaming
This Generator supports streaming the tokens from the LLM directly in output. To do so, pass a function to the streaming_callback
init parameter.
Usage
Install the watsonx-haystack
package to use the WatsonxGenerator
:
pip install watsonx-haystack
On its own
from haystack_integrations.components.generators.watsonx.generator import WatsonxGenerator
from haystack.utils import Secret
generator = WatsonxGenerator(
api_key=Secret.from_env_var("WATSONX_API_KEY"),
project_id=Secret.from_env_var("WATSONX_PROJECT_ID")
)
print(generator.run("What's Natural Language Processing? Be brief."))
In a pipeline
You can also use WatsonxGenerator
with the IBM watsonx.ai models in your pipeline.
from haystack import Pipeline
from haystack.components.builders import PromptBuilder
from haystack_integrations.components.generators.watsonx.generator import WatsonxGenerator
from haystack.utils import Secret
template = """
You are an assistant giving out valuable information to language learners.
Answer this question, be brief.
Question: {{ query }}?
"""
pipe = Pipeline()
pipe.add_component("prompt_builder", PromptBuilder(template))
pipe.add_component("llm", WatsonxGenerator(
api_key=Secret.from_env_var("WATSONX_API_KEY"),
project_id=Secret.from_env_var("WATSONX_PROJECT_ID")
))
pipe.connect("prompt_builder", "llm")
query = "What language is spoken in Germany?"
res = pipe.run(data={"prompt_builder": {"query": query}})
print(res)
Updated 1 day ago