Unified abstractions to represent tools across the framework.
Module tool
Tool
Data class representing a Tool that Language Models can prepare a call for.
Accurate definitions of the textual attributes such as name and description
are important for the Language Model to correctly prepare the call.
For resource-intensive operations like establishing connections to remote services or
loading models, override the warm_up() method. This method is called before the Tool
is used and should be idempotent, as it may be called multiple times during
pipeline/agent setup.
Arguments:
name: Name of the Tool.description: Description of the Tool.parameters: A JSON schema defining the parameters expected by the Tool.function: The function that will be invoked when the Tool is called.outputs_to_string: Optional dictionary defining how a tool outputs should be converted into a string. If the source is provided only the specified output key is sent to the handler. If the source is omitted the whole tool result is sent to the handler. Example:
{
"source": "docs", "handler": format_documents
}
inputs_from_state: Optional dictionary mapping state keys to tool parameter names. Example:{"repository": "repo"}maps state's "repository" to tool's "repo" parameter.outputs_to_state: Optional dictionary defining how tool outputs map to keys within state as well as optional handlers. If the source is provided only the specified output key is sent to the handler. Example:
{
"documents": {"source": "docs", "handler": custom_handler}
}
If the source is omitted the whole tool result is sent to the handler. Example:
{
"documents": {"handler": custom_handler}
}
Tool.tool_spec
@property
def tool_spec() -> dict[str, Any]
Return the Tool specification to be used by the Language Model.
Tool.warm_up
def warm_up() -> None
Prepare the Tool for use.
Override this method to establish connections to remote services, load models, or perform other resource-intensive initialization. This method should be idempotent, as it may be called multiple times.
Tool.invoke
def invoke(**kwargs: Any) -> Any
Invoke the Tool with the provided keyword arguments.
Tool.to_dict
def to_dict() -> dict[str, Any]
Serializes the Tool to a dictionary.
Returns:
Dictionary with serialized data.
Tool.from_dict
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "Tool"
Deserializes the Tool from a dictionary.
Arguments:
data: Dictionary to deserialize from.
Returns:
Deserialized Tool.
Module from_function
create_tool_from_function
def create_tool_from_function(
function: Callable,
name: Optional[str] = None,
description: Optional[str] = None,
inputs_from_state: Optional[dict[str, str]] = None,
outputs_to_state: Optional[dict[str, dict[str,
Any]]] = None) -> "Tool"
Create a Tool instance from a function.
Allows customizing the Tool name and description.
For simpler use cases, consider using the @tool decorator.
Usage example
from typing import Annotated, Literal
from haystack.tools import create_tool_from_function
def get_weather(
city: Annotated[str, "the city for which to get the weather"] = "Munich",
unit: Annotated[Literal["Celsius", "Fahrenheit"], "the unit for the temperature"] = "Celsius"):
'''A simple function to get the current weather for a location.'''
return f"Weather report for {city}: 20 {unit}, sunny"
tool = create_tool_from_function(get_weather)
print(tool)
>>> Tool(name='get_weather', description='A simple function to get the current weather for a location.',
>>> parameters={
>>> 'type': 'object',
>>> 'properties': {
>>> 'city': {'type': 'string', 'description': 'the city for which to get the weather', 'default': 'Munich'},
>>> 'unit': {
>>> 'type': 'string',
>>> 'enum': ['Celsius', 'Fahrenheit'],
>>> 'description': 'the unit for the temperature',
>>> 'default': 'Celsius',
>>> },
>>> }
>>> },
>>> function=<function get_weather at 0x7f7b3a8a9b80>)
Arguments:
function: The function to be converted into a Tool. The function must include type hints for all parameters. The function is expected to have basic python input types (str, int, float, bool, list, dict, tuple). Other input types may work but are not guaranteed. If a parameter is annotated usingtyping.Annotated, its metadata will be used as parameter description.name: The name of the Tool. If not provided, the name of the function will be used.description: The description of the Tool. If not provided, the docstring of the function will be used. To intentionally leave the description empty, pass an empty string.inputs_from_state: Optional dictionary mapping state keys to tool parameter names. Example:{"repository": "repo"}maps state's "repository" to tool's "repo" parameter.outputs_to_state: Optional dictionary defining how tool outputs map to state and message handling. Example:
{
"documents": {"source": "docs", "handler": custom_handler},
"message": {"source": "summary", "handler": format_summary}
}
Raises:
ValueError: If any parameter of the function lacks a type hint.SchemaGenerationError: If there is an error generating the JSON schema for the Tool.
Returns:
The Tool created from the function.
tool
def tool(
function: Optional[Callable] = None,
*,
name: Optional[str] = None,
description: Optional[str] = None,
inputs_from_state: Optional[dict[str, str]] = None,
outputs_to_state: Optional[dict[str, dict[str, Any]]] = None
) -> Union[Tool, Callable[[Callable], Tool]]
Decorator to convert a function into a Tool.
Can be used with or without parameters: @tool # without parameters def my_function(): ...
@tool(name="custom_name") # with parameters def my_function(): ...
Usage example
from typing import Annotated, Literal
from haystack.tools import tool
@tool
def get_weather(
city: Annotated[str, "the city for which to get the weather"] = "Munich",
unit: Annotated[Literal["Celsius", "Fahrenheit"], "the unit for the temperature"] = "Celsius"):
'''A simple function to get the current weather for a location.'''
return f"Weather report for {city}: 20 {unit}, sunny"
print(get_weather)
>>> Tool(name='get_weather', description='A simple function to get the current weather for a location.',
>>> parameters={
>>> 'type': 'object',
>>> 'properties': {
>>> 'city': {'type': 'string', 'description': 'the city for which to get the weather', 'default': 'Munich'},
>>> 'unit': {
>>> 'type': 'string',
>>> 'enum': ['Celsius', 'Fahrenheit'],
>>> 'description': 'the unit for the temperature',
>>> 'default': 'Celsius',
>>> },
>>> }
>>> },
>>> function=<function get_weather at 0x7f7b3a8a9b80>)
Arguments:
function: The function to decorate (when used without parameters)name: Optional custom name for the tooldescription: Optional custom descriptioninputs_from_state: Optional dictionary mapping state keys to tool parameter namesoutputs_to_state: Optional dictionary defining how tool outputs map to state and message handling
Returns:
Either a Tool instance or a decorator function that will create one
Module component_tool
ComponentTool
A Tool that wraps Haystack components, allowing them to be used as tools by LLMs.
ComponentTool automatically generates LLM-compatible tool schemas from component input sockets,
which are derived from the component's run method signature and type hints.
Key features:
- Automatic LLM tool calling schema generation from component input sockets
- Type conversion and validation for component inputs
- Support for types:
- Dataclasses
- Lists of dataclasses
- Basic types (str, int, float, bool, dict)
- Lists of basic types
- Automatic name generation from component class name
- Description extraction from component docstrings
To use ComponentTool, you first need a Haystack component - either an existing one or a new one you create. You can create a ComponentTool from the component by passing the component to the ComponentTool constructor. Below is an example of creating a ComponentTool from an existing SerperDevWebSearch component.
Usage Example:
from haystack import component, Pipeline
from haystack.tools import ComponentTool
from haystack.components.websearch import SerperDevWebSearch
from haystack.utils import Secret
from haystack.components.tools.tool_invoker import ToolInvoker
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.dataclasses import ChatMessage
# Create a SerperDev search component
search = SerperDevWebSearch(api_key=Secret.from_env_var("SERPERDEV_API_KEY"), top_k=3)
# Create a tool from the component
tool = ComponentTool(
component=search,
name="web_search", # Optional: defaults to "serper_dev_web_search"
description="Search the web for current information on any topic" # Optional: defaults to component docstring
)
# Create pipeline with OpenAIChatGenerator and ToolInvoker
pipeline = Pipeline()
pipeline.add_component("llm", OpenAIChatGenerator(model="gpt-4o-mini", tools=[tool]))
pipeline.add_component("tool_invoker", ToolInvoker(tools=[tool]))
# Connect components
pipeline.connect("llm.replies", "tool_invoker.messages")
message = ChatMessage.from_user("Use the web search tool to find information about Nikola Tesla")
# Run pipeline
result = pipeline.run({"llm": {"messages": [message]}})
print(result)
ComponentTool.__init__
def __init__(
component: Component,
name: Optional[str] = None,
description: Optional[str] = None,
parameters: Optional[dict[str, Any]] = None,
*,
outputs_to_string: Optional[dict[str, Union[str, Callable[[Any],
str]]]] = None,
inputs_from_state: Optional[dict[str, str]] = None,
outputs_to_state: Optional[dict[str, dict[str, Union[str,
Callable]]]] = None
) -> None
Create a Tool instance from a Haystack component.
Arguments:
component: The Haystack component to wrap as a tool.name: Optional name for the tool (defaults to snake_case of component class name).description: Optional description (defaults to component's docstring).parameters: A JSON schema defining the parameters expected by the Tool. Will fall back to the parameters defined in the component's run method signature if not provided.outputs_to_string: Optional dictionary defining how a tool outputs should be converted into a string. If the source is provided only the specified output key is sent to the handler. If the source is omitted the whole tool result is sent to the handler. Example:
{
"source": "docs", "handler": format_documents
}
inputs_from_state: Optional dictionary mapping state keys to tool parameter names. Example:{"repository": "repo"}maps state's "repository" to tool's "repo" parameter.outputs_to_state: Optional dictionary defining how tool outputs map to keys within state as well as optional handlers. If the source is provided only the specified output key is sent to the handler. Example:
{
"documents": {"source": "docs", "handler": custom_handler}
}
If the source is omitted the whole tool result is sent to the handler. Example:
{
"documents": {"handler": custom_handler}
}
Raises:
ValueError: If the component is invalid or schema generation fails.
ComponentTool.warm_up
def warm_up()
Prepare the ComponentTool for use.
ComponentTool.to_dict
def to_dict() -> dict[str, Any]
Serializes the ComponentTool to a dictionary.
ComponentTool.from_dict
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "ComponentTool"
Deserializes the ComponentTool from a dictionary.
ComponentTool.tool_spec
@property
def tool_spec() -> dict[str, Any]
Return the Tool specification to be used by the Language Model.
ComponentTool.invoke
def invoke(**kwargs: Any) -> Any
Invoke the Tool with the provided keyword arguments.
Module pipeline_tool
PipelineTool
A Tool that wraps Haystack Pipelines, allowing them to be used as tools by LLMs.
PipelineTool automatically generates LLM-compatible tool schemas from pipeline input sockets, which are derived from the underlying components in the pipeline.
Key features:
- Automatic LLM tool calling schema generation from pipeline inputs
- Description extraction of pipeline inputs based on the underlying component docstrings
To use PipelineTool, you first need a Haystack pipeline. Below is an example of creating a PipelineTool
Usage Example:
from haystack import Document, Pipeline
from haystack.dataclasses import ChatMessage
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.embedders.sentence_transformers_text_embedder import SentenceTransformersTextEmbedder
from haystack.components.embedders.sentence_transformers_document_embedder import (
SentenceTransformersDocumentEmbedder
)
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.components.retrievers import InMemoryEmbeddingRetriever
from haystack.components.agents import Agent
from haystack.tools import PipelineTool
# Initialize a document store and add some documents
document_store = InMemoryDocumentStore()
document_embedder = SentenceTransformersDocumentEmbedder(model="sentence-transformers/all-MiniLM-L6-v2")
documents = [
Document(content="Nikola Tesla was a Serbian-American inventor and electrical engineer."),
Document(
content="He is best known for his contributions to the design of the modern alternating current (AC) "
"electricity supply system."
),
]
document_embedder.warm_up()
docs_with_embeddings = document_embedder.run(documents=documents)["documents"]
document_store.write_documents(docs_with_embeddings)
# Build a simple retrieval pipeline
retrieval_pipeline = Pipeline()
retrieval_pipeline.add_component(
"embedder", SentenceTransformersTextEmbedder(model="sentence-transformers/all-MiniLM-L6-v2")
)
retrieval_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
retrieval_pipeline.connect("embedder.embedding", "retriever.query_embedding")
# Wrap the pipeline as a tool
retriever_tool = PipelineTool(
pipeline=retrieval_pipeline,
input_mapping={"query": ["embedder.text"]},
output_mapping={"retriever.documents": "documents"},
name="document_retriever",
description="For any questions about Nikola Tesla, always use this tool",
)
# Create an Agent with the tool
agent = Agent(
chat_generator=OpenAIChatGenerator(model="gpt-4.1-mini"),
tools=[retriever_tool]
)
# Let the Agent handle a query
result = agent.run([ChatMessage.from_user("Who was Nikola Tesla?")])
# Print result of the tool call
print("Tool Call Result:")
print(result["messages"][2].tool_call_result.result)
print("")
# Print answer
print("Answer:")
print(result["messages"][-1].text)
PipelineTool.__init__
def __init__(
pipeline: Union[Pipeline, AsyncPipeline],
*,
name: str,
description: str,
input_mapping: Optional[dict[str, list[str]]] = None,
output_mapping: Optional[dict[str, str]] = None,
parameters: Optional[dict[str, Any]] = None,
outputs_to_string: Optional[dict[str, Union[str, Callable[[Any],
str]]]] = None,
inputs_from_state: Optional[dict[str, str]] = None,
outputs_to_state: Optional[dict[str, dict[str, Union[str,
Callable]]]] = None
) -> None
Create a Tool instance from a Haystack pipeline.
Arguments:
pipeline: The Haystack pipeline to wrap as a tool.name: Name of the tool.description: Description of the tool.input_mapping: A dictionary mapping component input names to pipeline input socket paths. If not provided, a default input mapping will be created based on all pipeline inputs. Example:
input_mapping={
"query": ["retriever.query", "prompt_builder.query"],
}
output_mapping: A dictionary mapping pipeline output socket paths to component output names. If not provided, a default output mapping will be created based on all pipeline outputs. Example:
output_mapping={
"retriever.documents": "documents",
"generator.replies": "replies",
}
parameters: A JSON schema defining the parameters expected by the Tool. Will fall back to the parameters defined in the component's run method signature if not provided.outputs_to_string: Optional dictionary defining how a tool outputs should be converted into a string. If the source is provided only the specified output key is sent to the handler. If the source is omitted the whole tool result is sent to the handler. Example:
{
"source": "docs", "handler": format_documents
}
inputs_from_state: Optional dictionary mapping state keys to tool parameter names. Example:{"repository": "repo"}maps state's "repository" to tool's "repo" parameter.outputs_to_state: Optional dictionary defining how tool outputs map to keys within state as well as optional handlers. If the source is provided only the specified output key is sent to the handler. Example:
{
"documents": {"source": "docs", "handler": custom_handler}
}
If the source is omitted the whole tool result is sent to the handler. Example:
{
"documents": {"handler": custom_handler}
}
Raises:
ValueError: If the provided pipeline is not a valid Haystack Pipeline instance.
PipelineTool.to_dict
def to_dict() -> dict[str, Any]
Serializes the PipelineTool to a dictionary.
Returns:
The serialized dictionary representation of PipelineTool.
PipelineTool.from_dict
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "PipelineTool"
Deserializes the PipelineTool from a dictionary.
Arguments:
data: The dictionary representation of PipelineTool.
Returns:
The deserialized PipelineTool instance.
PipelineTool.warm_up
def warm_up()
Prepare the ComponentTool for use.
PipelineTool.tool_spec
@property
def tool_spec() -> dict[str, Any]
Return the Tool specification to be used by the Language Model.
PipelineTool.invoke
def invoke(**kwargs: Any) -> Any
Invoke the Tool with the provided keyword arguments.
Module toolset
Toolset
A collection of related Tools that can be used and managed as a cohesive unit.
Toolset serves two main purposes:
- Group related tools together: Toolset allows you to organize related tools into a single collection, making it easier to manage and use them as a unit in Haystack pipelines.
Example:
from haystack.tools import Tool, Toolset
from haystack.components.tools import ToolInvoker
# Define math functions
def add_numbers(a: int, b: int) -> int:
return a + b
def subtract_numbers(a: int, b: int) -> int:
return a - b
# Create tools with proper schemas
add_tool = Tool(
name="add",
description="Add two numbers",
parameters={
"type": "object",
"properties": {
"a": {"type": "integer"},
"b": {"type": "integer"}
},
"required": ["a", "b"]
},
function=add_numbers
)
subtract_tool = Tool(
name="subtract",
description="Subtract b from a",
parameters={
"type": "object",
"properties": {
"a": {"type": "integer"},
"b": {"type": "integer"}
},
"required": ["a", "b"]
},
function=subtract_numbers
)
# Create a toolset with the math tools
math_toolset = Toolset([add_tool, subtract_tool])
# Use the toolset with a ToolInvoker or ChatGenerator component
invoker = ToolInvoker(tools=math_toolset)
- Base class for dynamic tool loading: By subclassing Toolset, you can create implementations that dynamically load tools from external sources like OpenAPI URLs, MCP servers, or other resources.
Example:
from haystack.core.serialization import generate_qualified_class_name
from haystack.tools import Tool, Toolset
from haystack.components.tools import ToolInvoker
class CalculatorToolset(Toolset):
'''A toolset for calculator operations.'''
def __init__(self):
tools = self._create_tools()
super().__init__(tools)
def _create_tools(self):
# These Tool instances are obviously defined statically and for illustration purposes only.
# In a real-world scenario, you would dynamically load tools from an external source here.
tools = []
add_tool = Tool(
name="add",
description="Add two numbers",
parameters={
"type": "object",
"properties": {"a": {"type": "integer"}, "b": {"type": "integer"}},
"required": ["a", "b"],
},
function=lambda a, b: a + b,
)
multiply_tool = Tool(
name="multiply",
description="Multiply two numbers",
parameters={
"type": "object",
"properties": {"a": {"type": "integer"}, "b": {"type": "integer"}},
"required": ["a", "b"],
},
function=lambda a, b: a * b,
)
tools.append(add_tool)
tools.append(multiply_tool)
return tools
def to_dict(self):
return {
"type": generate_qualified_class_name(type(self)),
"data": {}, # no data to serialize as we define the tools dynamically
}
@classmethod
def from_dict(cls, data):
return cls() # Recreate the tools dynamically during deserialization
# Create the dynamic toolset and use it with ToolInvoker
calculator_toolset = CalculatorToolset()
invoker = ToolInvoker(tools=calculator_toolset)
Toolset implements the collection interface (iter, contains, len, getitem), making it behave like a list of Tools. This makes it compatible with components that expect iterable tools, such as ToolInvoker or Haystack chat generators.
When implementing a custom Toolset subclass for dynamic tool loading:
- Perform the dynamic loading in the init method
- Override to_dict() and from_dict() methods if your tools are defined dynamically
- Serialize endpoint descriptors rather than tool instances if your tools are loaded from external sources
Toolset.__post_init__
def __post_init__()
Validate and set up the toolset after initialization.
This handles the case when tools are provided during initialization.
Toolset.__iter__
def __iter__() -> Iterator[Tool]
Return an iterator over the Tools in this Toolset.
This allows the Toolset to be used wherever a list of Tools is expected.
Returns:
An iterator yielding Tool instances
Toolset.__contains__
def __contains__(item: Any) -> bool
Check if a tool is in this Toolset.
Supports checking by:
- Tool instance: tool in toolset
- Tool name: "tool_name" in toolset
Arguments:
item: Tool instance or tool name string
Returns:
True if contained, False otherwise
Toolset.warm_up
def warm_up() -> None
Prepare the Toolset for use.
Override this method to set up shared resources like database connections or HTTP sessions. This method should be idempotent, as it may be called multiple times.
Toolset.add
def add(tool: Union[Tool, "Toolset"]) -> None
Add a new Tool or merge another Toolset.
Arguments:
tool: A Tool instance or another Toolset to add
Raises:
ValueError: If adding the tool would result in duplicate tool namesTypeError: If the provided object is not a Tool or Toolset
Toolset.to_dict
def to_dict() -> dict[str, Any]
Serialize the Toolset to a dictionary.
Returns:
A dictionary representation of the Toolset Note for subclass implementers: The default implementation is ideal for scenarios where Tool resolution is static. However, if your subclass of Toolset dynamically resolves Tool instances from external sources—such as an MCP server, OpenAPI URL, or a local OpenAPI specification—you should consider serializing the endpoint descriptor instead of the Tool instances themselves. This strategy preserves the dynamic nature of your Toolset and minimizes the overhead associated with serializing potentially large collections of Tool objects. Moreover, by serializing the descriptor, you ensure that the deserialization process can accurately reconstruct the Tool instances, even if they have been modified or removed since the last serialization. Failing to serialize the descriptor may lead to issues where outdated or incorrect Tool configurations are loaded, potentially causing errors or unexpected behavior.
Toolset.from_dict
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "Toolset"
Deserialize a Toolset from a dictionary.
Arguments:
data: Dictionary representation of the Toolset
Returns:
A new Toolset instance
Toolset.__add__
def __add__(other: Union[Tool, "Toolset", list[Tool]]) -> "Toolset"
Concatenate this Toolset with another Tool, Toolset, or list of Tools.
Arguments:
other: Another Tool, Toolset, or list of Tools to concatenate
Raises:
TypeError: If the other parameter is not a Tool, Toolset, or list of ToolsValueError: If the combination would result in duplicate tool names
Returns:
A new Toolset containing all tools
Toolset.__len__
def __len__() -> int
Return the number of Tools in this Toolset.
Returns:
Number of Tools
Toolset.__getitem__
def __getitem__(index)
Get a Tool by index.
Arguments:
index: Index of the Tool to get
Returns:
The Tool at the specified index
_ToolsetWrapper
A wrapper that holds multiple toolsets and provides a unified interface.
This is used internally when combining different types of toolsets to preserve their individual configurations while still being usable with ToolInvoker.
_ToolsetWrapper.__iter__
def __iter__()
Iterate over all tools from all toolsets.
_ToolsetWrapper.__contains__
def __contains__(item)
Check if a tool is in any of the toolsets.
_ToolsetWrapper.warm_up
def warm_up()
Warm up all toolsets.
_ToolsetWrapper.__len__
def __len__()
Return total number of tools across all toolsets.
_ToolsetWrapper.__getitem__
def __getitem__(index)
Get a tool by index across all toolsets.
_ToolsetWrapper.__add__
def __add__(other)
Add another toolset or tool to this wrapper.
_ToolsetWrapper.__post_init__
def __post_init__()
Validate and set up the toolset after initialization.
This handles the case when tools are provided during initialization.
_ToolsetWrapper.add
def add(tool: Union[Tool, "Toolset"]) -> None
Add a new Tool or merge another Toolset.
Arguments:
tool: A Tool instance or another Toolset to add
Raises:
ValueError: If adding the tool would result in duplicate tool namesTypeError: If the provided object is not a Tool or Toolset
_ToolsetWrapper.to_dict
def to_dict() -> dict[str, Any]
Serialize the Toolset to a dictionary.
Returns:
A dictionary representation of the Toolset Note for subclass implementers: The default implementation is ideal for scenarios where Tool resolution is static. However, if your subclass of Toolset dynamically resolves Tool instances from external sources—such as an MCP server, OpenAPI URL, or a local OpenAPI specification—you should consider serializing the endpoint descriptor instead of the Tool instances themselves. This strategy preserves the dynamic nature of your Toolset and minimizes the overhead associated with serializing potentially large collections of Tool objects. Moreover, by serializing the descriptor, you ensure that the deserialization process can accurately reconstruct the Tool instances, even if they have been modified or removed since the last serialization. Failing to serialize the descriptor may lead to issues where outdated or incorrect Tool configurations are loaded, potentially causing errors or unexpected behavior.
_ToolsetWrapper.from_dict
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "Toolset"
Deserialize a Toolset from a dictionary.
Arguments:
data: Dictionary representation of the Toolset
Returns:
A new Toolset instance
