Transforms queries into vectors to look for similar or relevant Documents.
Module azure_document_embedder
AzureOpenAIDocumentEmbedder
Calculates document embeddings using OpenAI models deployed on Azure.
Usage example
from haystack import Document
from haystack.components.embedders import AzureOpenAIDocumentEmbedder
doc = Document(content="I love pizza!")
document_embedder = AzureOpenAIDocumentEmbedder()
result = document_embedder.run([doc])
print(result['documents'][0].embedding)
# [0.017020374536514282, -0.023255806416273117, ...]
AzureOpenAIDocumentEmbedder.__init__
def __init__(azure_endpoint: Optional[str] = None,
api_version: Optional[str] = "2023-05-15",
azure_deployment: str = "text-embedding-ada-002",
dimensions: Optional[int] = None,
api_key: Optional[Secret] = Secret.from_env_var(
"AZURE_OPENAI_API_KEY", strict=False),
azure_ad_token: Optional[Secret] = Secret.from_env_var(
"AZURE_OPENAI_AD_TOKEN", strict=False),
organization: Optional[str] = None,
prefix: str = "",
suffix: str = "",
batch_size: int = 32,
progress_bar: bool = True,
meta_fields_to_embed: Optional[List[str]] = None,
embedding_separator: str = "\n",
timeout: Optional[float] = None,
max_retries: Optional[int] = None,
*,
default_headers: Optional[Dict[str, str]] = None)
Creates an AzureOpenAIDocumentEmbedder component.
Arguments:
azure_endpoint
: The endpoint of the model deployed on Azure.api_version
: The version of the API to use.azure_deployment
: The name of the model deployed on Azure. The default model is text-embedding-ada-002.dimensions
: The number of dimensions of the resulting embeddings. Only supported in text-embedding-3 and later models.api_key
: The Azure OpenAI API key. You can set it with an environment variableAZURE_OPENAI_API_KEY
, or pass with this parameter during initialization.azure_ad_token
: Microsoft Entra ID token, see Microsoft's Entra ID documentation for more information. You can set it with an environment variableAZURE_OPENAI_AD_TOKEN
, or pass with this parameter during initialization. Previously called Azure Active Directory.organization
: Your organization ID. See OpenAI's Setting Up Your Organization for more information.prefix
: A string to add at the beginning of each text.suffix
: A string to add at the end of each text.batch_size
: Number of documents to embed at once.progress_bar
: IfTrue
, shows a progress bar when running.meta_fields_to_embed
: List of metadata fields to embed along with the document text.embedding_separator
: Separator used to concatenate the metadata fields to the document text.timeout
: The timeout forAzureOpenAI
client calls, in seconds. If not set, defaults to either theOPENAI_TIMEOUT
environment variable, or 30 seconds.max_retries
: Maximum number of retries to contact AzureOpenAI after an internal error. If not set, defaults to either theOPENAI_MAX_RETRIES
environment variable or to 5 retries.default_headers
: Default headers to send to the AzureOpenAI client.
AzureOpenAIDocumentEmbedder.to_dict
def to_dict() -> Dict[str, Any]
Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
AzureOpenAIDocumentEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "AzureOpenAIDocumentEmbedder"
Deserializes the component from a dictionary.
Arguments:
data
: Dictionary to deserialize from.
Returns:
Deserialized component.
AzureOpenAIDocumentEmbedder.run
@component.output_types(documents=List[Document], meta=Dict[str, Any])
def run(documents: List[Document]) -> Dict[str, Any]
Embeds a list of documents.
Arguments:
documents
: Documents to embed.
Returns:
A dictionary with the following keys:
documents
: A list of documents with embeddings.meta
: Information about the usage of the model.
Module azure_text_embedder
AzureOpenAITextEmbedder
Embeds strings using OpenAI models deployed on Azure.
Usage example
from haystack.components.embedders import AzureOpenAITextEmbedder
text_to_embed = "I love pizza!"
text_embedder = AzureOpenAITextEmbedder()
print(text_embedder.run(text_to_embed))
# {'embedding': [0.017020374536514282, -0.023255806416273117, ...],
# 'meta': {'model': 'text-embedding-ada-002-v2',
# 'usage': {'prompt_tokens': 4, 'total_tokens': 4}}}
AzureOpenAITextEmbedder.__init__
def __init__(azure_endpoint: Optional[str] = None,
api_version: Optional[str] = "2023-05-15",
azure_deployment: str = "text-embedding-ada-002",
dimensions: Optional[int] = None,
api_key: Optional[Secret] = Secret.from_env_var(
"AZURE_OPENAI_API_KEY", strict=False),
azure_ad_token: Optional[Secret] = Secret.from_env_var(
"AZURE_OPENAI_AD_TOKEN", strict=False),
organization: Optional[str] = None,
timeout: Optional[float] = None,
max_retries: Optional[int] = None,
prefix: str = "",
suffix: str = "",
*,
default_headers: Optional[Dict[str, str]] = None)
Creates an AzureOpenAITextEmbedder component.
Arguments:
azure_endpoint
: The endpoint of the model deployed on Azure.api_version
: The version of the API to use.azure_deployment
: The name of the model deployed on Azure. The default model is text-embedding-ada-002.dimensions
: The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.api_key
: The Azure OpenAI API key. You can set it with an environment variableAZURE_OPENAI_API_KEY
, or pass with this parameter during initialization.azure_ad_token
: Microsoft Entra ID token, see Microsoft's Entra ID documentation for more information. You can set it with an environment variableAZURE_OPENAI_AD_TOKEN
, or pass with this parameter during initialization. Previously called Azure Active Directory.organization
: Your organization ID. See OpenAI's Setting Up Your Organization for more information.timeout
: The timeout forAzureOpenAI
client calls, in seconds. If not set, defaults to either theOPENAI_TIMEOUT
environment variable, or 30 seconds.max_retries
: Maximum number of retries to contact AzureOpenAI after an internal error. If not set, defaults to either theOPENAI_MAX_RETRIES
environment variable, or to 5 retries.prefix
: A string to add at the beginning of each text.suffix
: A string to add at the end of each text.default_headers
: Default headers to send to the AzureOpenAI client.
AzureOpenAITextEmbedder.to_dict
def to_dict() -> Dict[str, Any]
Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
AzureOpenAITextEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "AzureOpenAITextEmbedder"
Deserializes the component from a dictionary.
Arguments:
data
: Dictionary to deserialize from.
Returns:
Deserialized component.
AzureOpenAITextEmbedder.run
@component.output_types(embedding=List[float], meta=Dict[str, Any])
def run(text: str)
Embeds a single string.
Arguments:
text
: Text to embed.
Returns:
A dictionary with the following keys:
embedding
: The embedding of the input text.meta
: Information about the usage of the model.
Module hugging_face_api_document_embedder
HuggingFaceAPIDocumentEmbedder
Embeds documents using Hugging Face APIs.
Use it with the following Hugging Face APIs:
Usage examples
With free serverless inference API
from haystack.components.embedders import HuggingFaceAPIDocumentEmbedder
from haystack.utils import Secret
from haystack.dataclasses import Document
doc = Document(content="I love pizza!")
doc_embedder = HuggingFaceAPIDocumentEmbedder(api_type="serverless_inference_api",
api_params={"model": "BAAI/bge-small-en-v1.5"},
token=Secret.from_token("<your-api-key>"))
result = document_embedder.run([doc])
print(result["documents"][0].embedding)
# [0.017020374536514282, -0.023255806416273117, ...]
With paid inference endpoints
from haystack.components.embedders import HuggingFaceAPIDocumentEmbedder
from haystack.utils import Secret
from haystack.dataclasses import Document
doc = Document(content="I love pizza!")
doc_embedder = HuggingFaceAPIDocumentEmbedder(api_type="inference_endpoints",
api_params={"url": "<your-inference-endpoint-url>"},
token=Secret.from_token("<your-api-key>"))
result = document_embedder.run([doc])
print(result["documents"][0].embedding)
# [0.017020374536514282, -0.023255806416273117, ...]
With self-hosted text embeddings inference
from haystack.components.embedders import HuggingFaceAPIDocumentEmbedder
from haystack.dataclasses import Document
doc = Document(content="I love pizza!")
doc_embedder = HuggingFaceAPIDocumentEmbedder(api_type="text_embeddings_inference",
api_params={"url": "http://localhost:8080"})
result = document_embedder.run([doc])
print(result["documents"][0].embedding)
# [0.017020374536514282, -0.023255806416273117, ...]
HuggingFaceAPIDocumentEmbedder.__init__
def __init__(api_type: Union[HFEmbeddingAPIType, str],
api_params: Dict[str, str],
token: Optional[Secret] = Secret.from_env_var(
["HF_API_TOKEN", "HF_TOKEN"], strict=False),
prefix: str = "",
suffix: str = "",
truncate: bool = True,
normalize: bool = False,
batch_size: int = 32,
progress_bar: bool = True,
meta_fields_to_embed: Optional[List[str]] = None,
embedding_separator: str = "\n")
Creates a HuggingFaceAPIDocumentEmbedder component.
Arguments:
api_type
: The type of Hugging Face API to use.api_params
: A dictionary with the following keys:model
: Hugging Face model ID. Required whenapi_type
isSERVERLESS_INFERENCE_API
.url
: URL of the inference endpoint. Required whenapi_type
isINFERENCE_ENDPOINTS
orTEXT_EMBEDDINGS_INFERENCE
.token
: The Hugging Face token to use as HTTP bearer authorization. Check your HF token in your account settings.prefix
: A string to add at the beginning of each text.suffix
: A string to add at the end of each text.truncate
: Truncates the input text to the maximum length supported by the model. Applicable whenapi_type
isTEXT_EMBEDDINGS_INFERENCE
, orINFERENCE_ENDPOINTS
if the backend uses Text Embeddings Inference. Ifapi_type
isSERVERLESS_INFERENCE_API
, this parameter is ignored. It is always set toTrue
and cannot be changed.normalize
: Normalizes the embeddings to unit length. Applicable whenapi_type
isTEXT_EMBEDDINGS_INFERENCE
, orINFERENCE_ENDPOINTS
if the backend uses Text Embeddings Inference. Ifapi_type
isSERVERLESS_INFERENCE_API
, this parameter is ignored. It is always set toFalse
and cannot be changed.batch_size
: Number of documents to process at once.progress_bar
: IfTrue
, shows a progress bar when running.meta_fields_to_embed
: List of metadata fields to embed along with the document text.embedding_separator
: Separator used to concatenate the metadata fields to the document text.
HuggingFaceAPIDocumentEmbedder.to_dict
def to_dict() -> Dict[str, Any]
Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
HuggingFaceAPIDocumentEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "HuggingFaceAPIDocumentEmbedder"
Deserializes the component from a dictionary.
Arguments:
data
: Dictionary to deserialize from.
Returns:
Deserialized component.
HuggingFaceAPIDocumentEmbedder.run
@component.output_types(documents=List[Document])
def run(documents: List[Document])
Embeds a list of documents.
Arguments:
documents
: Documents to embed.
Returns:
A dictionary with the following keys:
documents
: A list of documents with embeddings.
Module hugging_face_api_text_embedder
HuggingFaceAPITextEmbedder
Embeds strings using Hugging Face APIs.
Use it with the following Hugging Face APIs:
Usage examples
With free serverless inference API
from haystack.components.embedders import HuggingFaceAPITextEmbedder
from haystack.utils import Secret
text_embedder = HuggingFaceAPITextEmbedder(api_type="serverless_inference_api",
api_params={"model": "BAAI/bge-small-en-v1.5"},
token=Secret.from_token("<your-api-key>"))
print(text_embedder.run("I love pizza!"))
# {'embedding': [0.017020374536514282, -0.023255806416273117, ...],
With paid inference endpoints
from haystack.components.embedders import HuggingFaceAPITextEmbedder
from haystack.utils import Secret
text_embedder = HuggingFaceAPITextEmbedder(api_type="inference_endpoints",
api_params={"model": "BAAI/bge-small-en-v1.5"},
token=Secret.from_token("<your-api-key>"))
print(text_embedder.run("I love pizza!"))
# {'embedding': [0.017020374536514282, -0.023255806416273117, ...],
With self-hosted text embeddings inference
from haystack.components.embedders import HuggingFaceAPITextEmbedder
from haystack.utils import Secret
text_embedder = HuggingFaceAPITextEmbedder(api_type="text_embeddings_inference",
api_params={"url": "http://localhost:8080"})
print(text_embedder.run("I love pizza!"))
# {'embedding': [0.017020374536514282, -0.023255806416273117, ...],
HuggingFaceAPITextEmbedder.__init__
def __init__(api_type: Union[HFEmbeddingAPIType, str],
api_params: Dict[str, str],
token: Optional[Secret] = Secret.from_env_var(
["HF_API_TOKEN", "HF_TOKEN"], strict=False),
prefix: str = "",
suffix: str = "",
truncate: bool = True,
normalize: bool = False)
Creates a HuggingFaceAPITextEmbedder component.
Arguments:
api_type
: The type of Hugging Face API to use.api_params
: A dictionary with the following keys:model
: Hugging Face model ID. Required whenapi_type
isSERVERLESS_INFERENCE_API
.url
: URL of the inference endpoint. Required whenapi_type
isINFERENCE_ENDPOINTS
orTEXT_EMBEDDINGS_INFERENCE
.token
: The Hugging Face token to use as HTTP bearer authorization. Check your HF token in your account settings.prefix
: A string to add at the beginning of each text.suffix
: A string to add at the end of each text.truncate
: Truncates the input text to the maximum length supported by the model. Applicable whenapi_type
isTEXT_EMBEDDINGS_INFERENCE
, orINFERENCE_ENDPOINTS
if the backend uses Text Embeddings Inference. Ifapi_type
isSERVERLESS_INFERENCE_API
, this parameter is ignored. It is always set toTrue
and cannot be changed.normalize
: Normalizes the embeddings to unit length. Applicable whenapi_type
isTEXT_EMBEDDINGS_INFERENCE
, orINFERENCE_ENDPOINTS
if the backend uses Text Embeddings Inference. Ifapi_type
isSERVERLESS_INFERENCE_API
, this parameter is ignored. It is always set toFalse
and cannot be changed.
HuggingFaceAPITextEmbedder.to_dict
def to_dict() -> Dict[str, Any]
Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
HuggingFaceAPITextEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "HuggingFaceAPITextEmbedder"
Deserializes the component from a dictionary.
Arguments:
data
: Dictionary to deserialize from.
Returns:
Deserialized component.
HuggingFaceAPITextEmbedder.run
@component.output_types(embedding=List[float])
def run(text: str)
Embeds a single string.
Arguments:
text
: Text to embed.
Returns:
A dictionary with the following keys:
embedding
: The embedding of the input text.
Module openai_document_embedder
OpenAIDocumentEmbedder
Computes document embeddings using OpenAI models.
Usage example
from haystack import Document
from haystack.components.embedders import OpenAIDocumentEmbedder
doc = Document(content="I love pizza!")
document_embedder = OpenAIDocumentEmbedder()
result = document_embedder.run([doc])
print(result['documents'][0].embedding)
# [0.017020374536514282, -0.023255806416273117, ...]
OpenAIDocumentEmbedder.__init__
def __init__(api_key: Secret = Secret.from_env_var("OPENAI_API_KEY"),
model: str = "text-embedding-ada-002",
dimensions: Optional[int] = None,
api_base_url: Optional[str] = None,
organization: Optional[str] = None,
prefix: str = "",
suffix: str = "",
batch_size: int = 32,
progress_bar: bool = True,
meta_fields_to_embed: Optional[List[str]] = None,
embedding_separator: str = "\n",
timeout: Optional[float] = None,
max_retries: Optional[int] = None)
Creates an OpenAIDocumentEmbedder component.
Before initializing the component, you can set the 'OPENAI_TIMEOUT' and 'OPENAI_MAX_RETRIES'
environment variables to override the timeout
and max_retries
parameters respectively
in the OpenAI client.
Arguments:
api_key
: The OpenAI API key. You can set it with an environment variableOPENAI_API_KEY
, or pass with this parameter during initialization.model
: The name of the model to use for calculating embeddings. The default model istext-embedding-ada-002
.dimensions
: The number of dimensions of the resulting embeddings. Onlytext-embedding-3
and later models support this parameter.api_base_url
: Overrides the default base URL for all HTTP requests.organization
: Your OpenAI organization ID. See OpenAI's Setting Up Your Organization for more information.prefix
: A string to add at the beginning of each text.suffix
: A string to add at the end of each text.batch_size
: Number of documents to embed at once.progress_bar
: IfTrue
, shows a progress bar when running.meta_fields_to_embed
: List of metadata fields to embed along with the document text.embedding_separator
: Separator used to concatenate the metadata fields to the document text.timeout
: Timeout for OpenAI client calls. If not set, it defaults to either theOPENAI_TIMEOUT
environment variable, or 30 seconds.max_retries
: Maximum number of retries to contact OpenAI after an internal error. If not set, it defaults to either theOPENAI_MAX_RETRIES
environment variable, or 5 retries.
OpenAIDocumentEmbedder.to_dict
def to_dict() -> Dict[str, Any]
Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
OpenAIDocumentEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "OpenAIDocumentEmbedder"
Deserializes the component from a dictionary.
Arguments:
data
: Dictionary to deserialize from.
Returns:
Deserialized component.
OpenAIDocumentEmbedder.run
@component.output_types(documents=List[Document], meta=Dict[str, Any])
def run(documents: List[Document])
Embeds a list of documents.
Arguments:
documents
: A list of documents to embed.
Returns:
A dictionary with the following keys:
documents
: A list of documents with embeddings.meta
: Information about the usage of the model.
Module openai_text_embedder
OpenAITextEmbedder
Embeds strings using OpenAI models.
You can use it to embed user query and send it to an embedding Retriever.
Usage example
from haystack.components.embedders import OpenAITextEmbedder
text_to_embed = "I love pizza!"
text_embedder = OpenAITextEmbedder()
print(text_embedder.run(text_to_embed))
# {'embedding': [0.017020374536514282, -0.023255806416273117, ...],
# 'meta': {'model': 'text-embedding-ada-002-v2',
# 'usage': {'prompt_tokens': 4, 'total_tokens': 4}}}
OpenAITextEmbedder.__init__
def __init__(api_key: Secret = Secret.from_env_var("OPENAI_API_KEY"),
model: str = "text-embedding-ada-002",
dimensions: Optional[int] = None,
api_base_url: Optional[str] = None,
organization: Optional[str] = None,
prefix: str = "",
suffix: str = "",
timeout: Optional[float] = None,
max_retries: Optional[int] = None)
Creates an OpenAITextEmbedder component.
Before initializing the component, you can set the 'OPENAI_TIMEOUT' and 'OPENAI_MAX_RETRIES'
environment variables to override the timeout
and max_retries
parameters respectively
in the OpenAI client.
Arguments:
api_key
: The OpenAI API key. You can set it with an environment variableOPENAI_API_KEY
, or pass with this parameter during initialization.model
: The name of the model to use for calculating embeddings. The default model istext-embedding-ada-002
.dimensions
: The number of dimensions of the resulting embeddings. Onlytext-embedding-3
and later models support this parameter.api_base_url
: Overrides default base URL for all HTTP requests.organization
: Your organization ID. See OpenAI's production best practices for more information.prefix
: A string to add at the beginning of each text to embed.suffix
: A string to add at the end of each text to embed.timeout
: Timeout for OpenAI client calls. If not set, it defaults to either theOPENAI_TIMEOUT
environment variable, or 30 seconds.max_retries
: Maximum number of retries to contact OpenAI after an internal error. If not set, it defaults to either theOPENAI_MAX_RETRIES
environment variable, or set to 5.
OpenAITextEmbedder.to_dict
def to_dict() -> Dict[str, Any]
Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
OpenAITextEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "OpenAITextEmbedder"
Deserializes the component from a dictionary.
Arguments:
data
: Dictionary to deserialize from.
Returns:
Deserialized component.
OpenAITextEmbedder.run
@component.output_types(embedding=List[float], meta=Dict[str, Any])
def run(text: str)
Embeds a single string.
Arguments:
text
: Text to embed.
Returns:
A dictionary with the following keys:
embedding
: The embedding of the input text.meta
: Information about the usage of the model.
Module sentence_transformers_document_embedder
SentenceTransformersDocumentEmbedder
Calculates document embeddings using Sentence Transformers models.
It stores the embeddings in the embedding
metadata field of each document.
You can also embed documents' metadata.
Use this component in indexing pipelines to embed input documents
and send them to DocumentWriter to write a into a Document Store.
Usage example:
from haystack import Document
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
doc = Document(content="I love pizza!")
doc_embedder = SentenceTransformersDocumentEmbedder()
doc_embedder.warm_up()
result = doc_embedder.run([doc])
print(result['documents'][0].embedding)
# [-0.07804739475250244, 0.1498992145061493, ...]
SentenceTransformersDocumentEmbedder.__init__
def __init__(model: str = "sentence-transformers/all-mpnet-base-v2",
device: Optional[ComponentDevice] = None,
token: Optional[Secret] = Secret.from_env_var(
["HF_API_TOKEN", "HF_TOKEN"], strict=False),
prefix: str = "",
suffix: str = "",
batch_size: int = 32,
progress_bar: bool = True,
normalize_embeddings: bool = False,
meta_fields_to_embed: Optional[List[str]] = None,
embedding_separator: str = "\n",
trust_remote_code: bool = False,
truncate_dim: Optional[int] = None,
model_kwargs: Optional[Dict[str, Any]] = None,
tokenizer_kwargs: Optional[Dict[str, Any]] = None,
config_kwargs: Optional[Dict[str, Any]] = None,
precision: Literal["float32", "int8", "uint8", "binary",
"ubinary"] = "float32")
Creates a SentenceTransformersDocumentEmbedder component.
Arguments:
model
: The model to use for calculating embeddings. Pass a local path or ID of the model on Hugging Face.device
: The device to use for loading the model. Overrides the default device.token
: The API token to download private models from Hugging Face.prefix
: A string to add at the beginning of each document text. Can be used to prepend the text with an instruction, as required by some embedding models, such as E5 and bge.suffix
: A string to add at the end of each document text.batch_size
: Number of documents to embed at once.progress_bar
: IfTrue
, shows a progress bar when embedding documents.normalize_embeddings
: IfTrue
, the embeddings are normalized using L2 normalization, so that each embedding has a norm of 1.meta_fields_to_embed
: List of metadata fields to embed along with the document text.embedding_separator
: Separator used to concatenate the metadata fields to the document text.trust_remote_code
: IfFalse
, allows only Hugging Face verified model architectures. IfTrue
, allows custom models and scripts.truncate_dim
: The dimension to truncate sentence embeddings to.None
does no truncation. If the model wasn't trained with Matryoshka Representation Learning, truncating embeddings can significantly affect performance.model_kwargs
: Additional keyword arguments forAutoModelForSequenceClassification.from_pretrained
when loading the model. Refer to specific model documentation for available kwargs.tokenizer_kwargs
: Additional keyword arguments forAutoTokenizer.from_pretrained
when loading the tokenizer. Refer to specific model documentation for available kwargs.config_kwargs
: Additional keyword arguments forAutoConfig.from_pretrained
when loading the model configuration.precision
: The precision to use for the embeddings. All non-float32 precisions are quantized embeddings. Quantized embeddings are smaller and faster to compute, but may have a lower accuracy. They are useful for reducing the size of the embeddings of a corpus for semantic search, among other tasks.
SentenceTransformersDocumentEmbedder.to_dict
def to_dict() -> Dict[str, Any]
Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
SentenceTransformersDocumentEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str,
Any]) -> "SentenceTransformersDocumentEmbedder"
Deserializes the component from a dictionary.
Arguments:
data
: Dictionary to deserialize from.
Returns:
Deserialized component.
SentenceTransformersDocumentEmbedder.warm_up
def warm_up()
Initializes the component.
SentenceTransformersDocumentEmbedder.run
@component.output_types(documents=List[Document])
def run(documents: List[Document])
Embed a list of documents.
Arguments:
documents
: Documents to embed.
Returns:
A dictionary with the following keys:
documents
: Documents with embeddings.
Module sentence_transformers_text_embedder
SentenceTransformersTextEmbedder
Embeds strings using Sentence Transformers models.
You can use it to embed user query and send it to an embedding retriever.
Usage example:
from haystack.components.embedders import SentenceTransformersTextEmbedder
text_to_embed = "I love pizza!"
text_embedder = SentenceTransformersTextEmbedder()
text_embedder.warm_up()
print(text_embedder.run(text_to_embed))
# {'embedding': [-0.07804739475250244, 0.1498992145061493,, ...]}
SentenceTransformersTextEmbedder.__init__
def __init__(model: str = "sentence-transformers/all-mpnet-base-v2",
device: Optional[ComponentDevice] = None,
token: Optional[Secret] = Secret.from_env_var(
["HF_API_TOKEN", "HF_TOKEN"], strict=False),
prefix: str = "",
suffix: str = "",
batch_size: int = 32,
progress_bar: bool = True,
normalize_embeddings: bool = False,
trust_remote_code: bool = False,
truncate_dim: Optional[int] = None,
model_kwargs: Optional[Dict[str, Any]] = None,
tokenizer_kwargs: Optional[Dict[str, Any]] = None,
config_kwargs: Optional[Dict[str, Any]] = None,
precision: Literal["float32", "int8", "uint8", "binary",
"ubinary"] = "float32")
Create a SentenceTransformersTextEmbedder component.
Arguments:
model
: The model to use for calculating embeddings. Specify the path to a local model or the ID of the model on Hugging Face.device
: Overrides the default device used to load the model.token
: An API token to use private models from Hugging Face.prefix
: A string to add at the beginning of each text to be embedded. You can use it to prepend the text with an instruction, as required by some embedding models, such as E5 and bge.suffix
: A string to add at the end of each text to embed.batch_size
: Number of texts to embed at once.progress_bar
: IfTrue
, shows a progress bar for calculating embeddings. IfFalse
, disables the progress bar.normalize_embeddings
: IfTrue
, the embeddings are normalized using L2 normalization, so that the embeddings have a norm of 1.trust_remote_code
: IfFalse
, permits only Hugging Face verified model architectures. IfTrue
, permits custom models and scripts.truncate_dim
: The dimension to truncate sentence embeddings to.None
does no truncation. If the model has not been trained with Matryoshka Representation Learning, truncation of embeddings can significantly affect performance.model_kwargs
: Additional keyword arguments forAutoModelForSequenceClassification.from_pretrained
when loading the model. Refer to specific model documentation for available kwargs.tokenizer_kwargs
: Additional keyword arguments forAutoTokenizer.from_pretrained
when loading the tokenizer. Refer to specific model documentation for available kwargs.config_kwargs
: Additional keyword arguments forAutoConfig.from_pretrained
when loading the model configuration.precision
: The precision to use for the embeddings. All non-float32 precisions are quantized embeddings. Quantized embeddings are smaller in size and faster to compute, but may have a lower accuracy. They are useful for reducing the size of the embeddings of a corpus for semantic search, among other tasks.
SentenceTransformersTextEmbedder.to_dict
def to_dict() -> Dict[str, Any]
Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
SentenceTransformersTextEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "SentenceTransformersTextEmbedder"
Deserializes the component from a dictionary.
Arguments:
data
: Dictionary to deserialize from.
Returns:
Deserialized component.
SentenceTransformersTextEmbedder.warm_up
def warm_up()
Initializes the component.
SentenceTransformersTextEmbedder.run
@component.output_types(embedding=List[float])
def run(text: str)
Embed a single string.
Arguments:
text
: Text to embed.
Returns:
A dictionary with the following keys:
embedding
: The embedding of the input text.