DocumentationAPI Reference📓 Tutorials🧑‍🍳 Cookbook🤝 Integrations💜 Discord🎨 Studio
API Reference

Query

Components for query processing and expansion.

Module haystack_experimental.components.query.query_expander

QueryExpander

A component that returns a list of semantically similar queries to improve retrieval recall in RAG systems.

The component uses a chat generator to expand queries. The chat generator is expected to return a JSON response with the following structure:

Usage example:

{"queries": ["expanded query 1", "expanded query 2", "expanded query 3"]}
from haystack.components.generators.chat.openai import OpenAIChatGenerator
from haystack_experimental.components.query import QueryExpander

expander = QueryExpander(
    chat_generator=OpenAIChatGenerator(model="gpt-4.1-mini"),
    n_expansions=3
)

result = expander.run(query="green energy sources")
print(result["queries"])
# Output: ['alternative query 1', 'alternative query 2', 'alternative query 3', 'green energy sources']
# Note: Up to 3 additional queries + 1 original query (if include_original_query=True)

# To control total number of queries:
expander = QueryExpander(n_expansions=2, include_original_query=True)  # Up to 3 total
# or
expander = QueryExpander(n_expansions=3, include_original_query=False)  # Exactly 3 total

QueryExpander.__init__

def __init__(*,
             chat_generator: Optional[ChatGenerator] = None,
             prompt_template: Optional[str] = None,
             n_expansions: int = 4,
             include_original_query: bool = True)

Initialize the QueryExpander component.

Arguments:

  • chat_generator: The chat generator component to use for query expansion. If None, a default OpenAIChatGenerator with gpt-4.1-mini model is used.
  • prompt_template: Custom PromptBuilder template for query expansion. The template should instruct the LLM to return a JSON response with the structure: {"queries": ["query1", "query2", "query3"]}. The template should include 'query' and 'n_expansions' variables.
  • n_expansions: Number of alternative queries to generate (default: 4).
  • include_original_query: Whether to include the original query in the output.

QueryExpander.to_dict

def to_dict() -> Dict[str, Any]

Serializes the component to a dictionary.

Returns:

Dictionary with serialized data.

QueryExpander.from_dict

@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "QueryExpander"

Deserializes the component from a dictionary.

Arguments:

  • data: Dictionary with serialized data.

Returns:

Deserialized component.

QueryExpander.run

@component.output_types(queries=List[str])
def run(query: str,
        n_expansions: Optional[int] = None) -> Dict[str, List[str]]

Expand the input query into multiple semantically similar queries.

The language of the original query is preserved in the expanded queries.

Arguments:

  • query: The original query to expand.
  • n_expansions: Number of additional queries to generate (not including the original). If None, uses the value from initialization. Can be 0 to generate no additional queries.

Raises:

  • ValueError: If n_expansions is not positive (less than or equal to 0).
  • RuntimeError: If the component is not warmed up and the chat generator does not support warm up.

Returns:

Dictionary with "queries" key containing the list of expanded queries. If include_original_query=True, the original query will be included in addition to the n_expansions alternative queries.

QueryExpander.warm_up

def warm_up()

Warm up the underlying LLM if it supports it.