Tool-using agents with provider-agnostic chat model support.
Module agent
Agent
A Haystack component that implements a tool-using agent with provider-agnostic chat model support.
The component processes messages and executes tools until a exit_condition condition is met. The exit_condition can be triggered either by a direct text response or by invoking a specific designated tool.
Usage example
from haystack.components.agents import Agent
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.dataclasses import ChatMessage
from haystack.tools.tool import Tool
tools = [Tool(name="calculator", description="..."), Tool(name="search", description="...")]
agent = Agent(
chat_generator=OpenAIChatGenerator(),
tools=tools,
exit_condition="search",
)
# Run the agent
result = agent.run(
messages=[ChatMessage.from_user("Find information about Haystack")]
)
assert "messages" in result # Contains conversation history
Agent.__init__
def __init__(*,
chat_generator: ChatGenerator,
tools: Optional[List[Tool]] = None,
system_prompt: Optional[str] = None,
exit_conditions: Optional[List[str]] = None,
state_schema: Optional[Dict[str, Any]] = None,
max_agent_steps: int = 100,
raise_on_tool_invocation_failure: bool = False,
streaming_callback: Optional[SyncStreamingCallbackT] = None)
Initialize the agent component.
Arguments:
chat_generator
: An instance of the chat generator that your agent should use. It must support tools.tools
: List of Tool objects available to the agentsystem_prompt
: System prompt for the agent.exit_conditions
: List of conditions that will cause the agent to return. Can include "text" if the agent should return when it generates a message without tool calls, or tool names that will cause the agent to return once the tool was executed. Defaults to ["text"].state_schema
: The schema for the runtime state used by the tools.max_agent_steps
: Maximum number of steps the agent will run before stopping. Defaults to 100. If the agent exceeds this number of steps, it will stop and return the current state.raise_on_tool_invocation_failure
: Should the agent raise an exception when a tool invocation fails? If set to False, the exception will be turned into a chat message and passed to the LLM.streaming_callback
: A callback that will be invoked when a response is streamed from the LLM.
Raises:
TypeError
: If the chat_generator does not support tools parameter in its run method.
Agent.warm_up
def warm_up() -> None
Warm up the Agent.
Agent.to_dict
def to_dict() -> Dict[str, Any]
Serialize the component to a dictionary.
Returns:
Dictionary with serialized data
Agent.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "Agent"
Deserialize the agent from a dictionary.
Arguments:
data
: Dictionary to deserialize from
Returns:
Deserialized agent
Agent.run
def run(messages: List[ChatMessage],
streaming_callback: Optional[SyncStreamingCallbackT] = None,
**kwargs: Dict[str, Any]) -> Dict[str, Any]
Process messages and execute tools until the exit condition is met.
Arguments:
messages
: List of chat messages to processstreaming_callback
: A callback that will be invoked when a response is streamed from the LLM.kwargs
: Additional data to pass to the State schema used by the Agent. The keys must match the schema defined in the Agent'sstate_schema
.
Returns:
Dictionary containing messages and outputs matching the defined output types