DocumentationAPI Reference📓 Tutorials🧑‍🍳 Cookbook🤝 Integrations💜 Discord🎨 Studio
API Reference

Various converters to transform data from one format to another.

Module azure

AzureOCRDocumentConverter

Converts files to documents using Azure's Document Intelligence service.

Supported file formats are: PDF, JPEG, PNG, BMP, TIFF, DOCX, XLSX, PPTX, and HTML.

To use this component, you need an active Azure account and a Document Intelligence or Cognitive Services resource. For help with setting up your resource, see Azure documentation.

Usage example

from haystack.components.converters import AzureOCRDocumentConverter
from haystack.utils import Secret

converter = AzureOCRDocumentConverter(endpoint="<url>", api_key=Secret.from_token("<your-api-key>"))
results = converter.run(sources=["path/to/doc_with_images.pdf"], meta={"date_added": datetime.now().isoformat()})
documents = results["documents"]
print(documents[0].content)
# 'This is a text from the PDF file.'

AzureOCRDocumentConverter.__init__

def __init__(endpoint: str,
             api_key: Secret = Secret.from_env_var("AZURE_AI_API_KEY"),
             model_id: str = "prebuilt-read",
             preceding_context_len: int = 3,
             following_context_len: int = 3,
             merge_multiple_column_headers: bool = True,
             page_layout: Literal["natural", "single_column"] = "natural",
             threshold_y: Optional[float] = 0.05,
             store_full_path: bool = True)

Creates an AzureOCRDocumentConverter component.

Arguments:

  • endpoint: The endpoint of your Azure resource.
  • api_key: The API key of your Azure resource.
  • model_id: The ID of the model you want to use. For a list of available models, see [Azure documentation] (https://learn.microsoft.com/en-us/azure/ai-services/document-intelligence/choose-model-feature).
  • preceding_context_len: Number of lines before a table to include as preceding context (this will be added to the metadata).
  • following_context_len: Number of lines after a table to include as subsequent context ( this will be added to the metadata).
  • merge_multiple_column_headers: If True, merges multiple column header rows into a single row.
  • page_layout: The type reading order to follow. Possible options:
  • natural: Uses the natural reading order determined by Azure.
  • single_column: Groups all lines with the same height on the page based on a threshold determined by threshold_y.
  • threshold_y: Only relevant if single_column is set to page_layout. The threshold, in inches, to determine if two recognized PDF elements are grouped into a single line. This is crucial for section headers or numbers which may be spatially separated from the remaining text on the horizontal axis.
  • store_full_path: If True, the full path of the file is stored in the metadata of the document. If False, only the file name is stored.

AzureOCRDocumentConverter.run

@component.output_types(documents=List[Document],
                        raw_azure_response=List[Dict])
def run(sources: List[Union[str, Path, ByteStream]],
        meta: Optional[List[Dict[str, Any]]] = None)

Convert a list of files to Documents using Azure's Document Intelligence service.

Arguments:

  • sources: List of file paths or ByteStream objects.
  • meta: Optional metadata to attach to the Documents. This value can be either a list of dictionaries or a single dictionary. If it's a single dictionary, its content is added to the metadata of all produced Documents. If it's a list, the length of the list must match the number of sources, because the two lists will be zipped. If sources contains ByteStream objects, their meta will be added to the output Documents.

Returns:

A dictionary with the following keys:

  • documents: List of created Documents
  • raw_azure_response: List of raw Azure responses used to create the Documents

AzureOCRDocumentConverter.to_dict

def to_dict() -> Dict[str, Any]

Serializes the component to a dictionary.

Returns:

Dictionary with serialized data.

AzureOCRDocumentConverter.from_dict

@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "AzureOCRDocumentConverter"

Deserializes the component from a dictionary.

Arguments:

  • data: The dictionary to deserialize from.

Returns:

The deserialized component.

Module csv

CSVToDocument

Converts CSV files to Documents.

By default, it uses UTF-8 encoding when converting files but
you can also set a custom encoding.
It can attach metadata to the resulting documents.

### Usage example

```python
from haystack.components.converters.csv import CSVToDocument
converter = CSVToDocument()
results = converter.run(sources=["sample.csv"], meta={"date_added": datetime.now().isoformat()})
documents = results["documents"]
print(documents[0].content)
# 'col1,col2

ow1,row1 row2row2 ' ```

CSVToDocument.__init__

def __init__(encoding: str = "utf-8", store_full_path: bool = True)

Creates a CSVToDocument component.

Arguments:

  • encoding: The encoding of the csv files to convert. If the encoding is specified in the metadata of a source ByteStream, it overrides this value.
  • store_full_path: If True, the full path of the file is stored in the metadata of the document. If False, only the file name is stored.

CSVToDocument.run

@component.output_types(documents=List[Document])
def run(sources: List[Union[str, Path, ByteStream]],
        meta: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None)

Converts a CSV file to a Document.

Arguments:

  • sources: List of file paths or ByteStream objects.
  • meta: Optional metadata to attach to the documents. This value can be either a list of dictionaries or a single dictionary. If it's a single dictionary, its content is added to the metadata of all produced documents. If it's a list, the length of the list must match the number of sources, because the two lists will be zipped. If sources contains ByteStream objects, their meta will be added to the output documents.

Returns:

A dictionary with the following keys:

  • documents: Created documents

Module docx

DOCXMetadata

Describes the metadata of Docx file.

Arguments:

  • author: The author
  • category: The category
  • comments: The comments
  • content_status: The content status
  • created: The creation date (ISO formatted string)
  • identifier: The identifier
  • keywords: Available keywords
  • language: The language of the document
  • last_modified_by: User who last modified the document
  • last_printed: The last printed date (ISO formatted string)
  • modified: The last modification date (ISO formatted string)
  • revision: The revision number
  • subject: The subject
  • title: The title
  • version: The version

DOCXTableFormat

Supported formats for storing DOCX tabular data in a Document.

DOCXTableFormat.from_str

@staticmethod
def from_str(string: str) -> "DOCXTableFormat"

Convert a string to a DOCXTableFormat enum.

DOCXToDocument

Converts DOCX files to Documents.

Uses python-docx library to convert the DOCX file to a document. This component does not preserve page breaks in the original document.

Usage example:

from haystack.components.converters.docx import DOCXToDocument, DOCXTableFormat

converter = DOCXToDocument(table_format=DOCXTableFormat.CSV)
results = converter.run(sources=["sample.docx"], meta={"date_added": datetime.now().isoformat()})
documents = results["documents"]
print(documents[0].content)
# 'This is a text from the DOCX file.'

DOCXToDocument.__init__

def __init__(table_format: Union[str, DOCXTableFormat] = DOCXTableFormat.CSV,
             store_full_path: bool = True)

Create a DOCXToDocument component.

Arguments:

  • table_format: The format for table output. Can be either DOCXTableFormat.MARKDOWN, DOCXTableFormat.CSV, "markdown", or "csv". Defaults to DOCXTableFormat.CSV.
  • store_full_path: If True, the full path of the file is stored in the metadata of the document. If False, only the file name is stored.

DOCXToDocument.to_dict

def to_dict() -> Dict[str, Any]

Serializes the component to a dictionary.

Returns:

Dictionary with serialized data.

DOCXToDocument.from_dict

@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "DOCXToDocument"

Deserializes the component from a dictionary.

Arguments:

  • data: The dictionary to deserialize from.

Returns:

The deserialized component.

DOCXToDocument.run

@component.output_types(documents=List[Document])
def run(sources: List[Union[str, Path, ByteStream]],
        meta: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None)

Converts DOCX files to Documents.

Arguments:

  • sources: List of file paths or ByteStream objects.
  • meta: Optional metadata to attach to the Documents. This value can be either a list of dictionaries or a single dictionary. If it's a single dictionary, its content is added to the metadata of all produced Documents. If it's a list, the length of the list must match the number of sources, because the two lists will be zipped. If sources contains ByteStream objects, their meta will be added to the output Documents.

Returns:

A dictionary with the following keys:

  • documents: Created Documents

Module html

HTMLToDocument

Converts an HTML file to a Document.

Usage example:

from haystack.components.converters import HTMLToDocument

converter = HTMLToDocument()
results = converter.run(sources=["path/to/sample.html"])
documents = results["documents"]
print(documents[0].content)
# 'This is a text from the HTML file.'

HTMLToDocument.__init__

def __init__(extraction_kwargs: Optional[Dict[str, Any]] = None,
             store_full_path: bool = True)

Create an HTMLToDocument component.

Arguments:

  • extraction_kwargs: A dictionary containing keyword arguments to customize the extraction process. These are passed to the underlying Trafilatura extract function. For the full list of available arguments, see the Trafilatura documentation.
  • store_full_path: If True, the full path of the file is stored in the metadata of the document. If False, only the file name is stored.

HTMLToDocument.to_dict

def to_dict() -> Dict[str, Any]

Serializes the component to a dictionary.

Returns:

Dictionary with serialized data.

HTMLToDocument.from_dict

@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "HTMLToDocument"

Deserializes the component from a dictionary.

Arguments:

  • data: The dictionary to deserialize from.

Returns:

The deserialized component.

HTMLToDocument.run

@component.output_types(documents=List[Document])
def run(sources: List[Union[str, Path, ByteStream]],
        meta: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None,
        extraction_kwargs: Optional[Dict[str, Any]] = None)

Converts a list of HTML files to Documents.

Arguments:

  • sources: List of HTML file paths or ByteStream objects.
  • meta: Optional metadata to attach to the Documents. This value can be either a list of dictionaries or a single dictionary. If it's a single dictionary, its content is added to the metadata of all produced Documents. If it's a list, the length of the list must match the number of sources, because the two lists will be zipped. If sources contains ByteStream objects, their meta will be added to the output Documents.
  • extraction_kwargs: Additional keyword arguments to customize the extraction process.

Returns:

A dictionary with the following keys:

  • documents: Created Documents

Module json

JSONConverter

Converts one or more JSON files into a text document.

Usage examples

import json

from haystack.components.converters import JSONConverter
from haystack.dataclasses import ByteStream

source = ByteStream.from_string(json.dumps({"text": "This is the content of my document"}))

converter = JSONConverter(content_key="text")
results = converter.run(sources=[source])
documents = results["documents"]
print(documents[0].content)
# 'This is the content of my document'

Optionally, you can also provide a jq_schema string to filter the JSON source files and extra_meta_fields to extract from the filtered data:

import json

from haystack.components.converters import JSONConverter
from haystack.dataclasses import ByteStream

data = {
    "laureates": [
        {
            "firstname": "Enrico",
            "surname": "Fermi",
            "motivation": "for his demonstrations of the existence of new radioactive elements produced "
            "by neutron irradiation, and for his related discovery of nuclear reactions brought about by"
            " slow neutrons",
        },
        {
            "firstname": "Rita",
            "surname": "Levi-Montalcini",
            "motivation": "for their discoveries of growth factors",
        },
    ],
}
source = ByteStream.from_string(json.dumps(data))
converter = JSONConverter(
    jq_schema=".laureates[]", content_key="motivation", extra_meta_fields={"firstname", "surname"}
)

results = converter.run(sources=[source])
documents = results["documents"]
print(documents[0].content)
# 'for his demonstrations of the existence of new radioactive elements produced by
# neutron irradiation, and for his related discovery of nuclear reactions brought
# about by slow neutrons'

print(documents[0].meta)
# {'firstname': 'Enrico', 'surname': 'Fermi'}

print(documents[1].content)
# 'for their discoveries of growth factors'

print(documents[1].meta)
# {'firstname': 'Rita', 'surname': 'Levi-Montalcini'}

JSONConverter.__init__

def __init__(jq_schema: Optional[str] = None,
             content_key: Optional[str] = None,
             extra_meta_fields: Optional[Union[Set[str], Literal["*"]]] = None,
             store_full_path: bool = True)

Creates a JSONConverter component.

An optional jq_schema can be provided to extract nested data in the JSON source files. See the official jq documentation for more info on the filters syntax. If jq_schema is not set, whole JSON source files will be used to extract content.

Optionally, you can provide a content_key to specify which key in the extracted object must be set as the document's content.

If both jq_schema and content_key are set, the component will search for the content_key in the JSON object extracted by jq_schema. If the extracted data is not a JSON object, it will be skipped.

If only jq_schema is set, the extracted data must be a scalar value. If it's a JSON object or array, it will be skipped.

If only content_key is set, the source JSON file must be a JSON object, else it will be skipped.

extra_meta_fields can either be set to a set of strings or a literal "*" string. If it's a set of strings, it must specify fields in the extracted objects that must be set in the extracted documents. If a field is not found, the meta value will be None. If set to "*", all fields that are not content_key found in the filtered JSON object will be saved as metadata.

Initialization will fail if neither jq_schema nor content_key are set.

Arguments:

  • jq_schema: Optional jq filter string to extract content. If not specified, whole JSON object will be used to extract information.
  • content_key: Optional key to extract document content. If jq_schema is specified, the content_key will be extracted from that object.
  • extra_meta_fields: An optional set of meta keys to extract from the content. If jq_schema is specified, all keys will be extracted from that object.
  • store_full_path: If True, the full path of the file is stored in the metadata of the document. If False, only the file name is stored.

JSONConverter.to_dict

def to_dict() -> Dict[str, Any]

Serializes the component to a dictionary.

Returns:

Dictionary with serialized data.

JSONConverter.from_dict

@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "JSONConverter"

Deserializes the component from a dictionary.

Arguments:

  • data: Dictionary to deserialize from.

Returns:

Deserialized component.

JSONConverter.run

@component.output_types(documents=List[Document])
def run(sources: List[Union[str, Path, ByteStream]],
        meta: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None)

Converts a list of JSON files to documents.

Arguments:

  • sources: A list of file paths or ByteStream objects.
  • meta: Optional metadata to attach to the documents. This value can be either a list of dictionaries or a single dictionary. If it's a single dictionary, its content is added to the metadata of all produced documents. If it's a list, the length of the list must match the number of sources. If sources contain ByteStream objects, their meta will be added to the output documents.

Returns:

A dictionary with the following keys:

  • documents: A list of created documents.

Module markdown

MarkdownToDocument

Converts a Markdown file into a text Document.

Usage example:

from haystack.components.converters import MarkdownToDocument
from datetime import datetime

converter = MarkdownToDocument()
results = converter.run(sources=["path/to/sample.md"], meta={"date_added": datetime.now().isoformat()})
documents = results["documents"]
print(documents[0].content)
# 'This is a text from the markdown file.'

MarkdownToDocument.__init__

def __init__(table_to_single_line: bool = False,
             progress_bar: bool = True,
             store_full_path: bool = True)

Create a MarkdownToDocument component.

Arguments:

  • table_to_single_line: If True converts table contents into a single line.
  • progress_bar: If True shows a progress bar when running.
  • store_full_path: If True, the full path of the file is stored in the metadata of the document. If False, only the file name is stored.

MarkdownToDocument.run

@component.output_types(documents=List[Document])
def run(sources: List[Union[str, Path, ByteStream]],
        meta: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None)

Converts a list of Markdown files to Documents.

Arguments:

  • sources: List of file paths or ByteStream objects.
  • meta: Optional metadata to attach to the Documents. This value can be either a list of dictionaries or a single dictionary. If it's a single dictionary, its content is added to the metadata of all produced Documents. If it's a list, the length of the list must match the number of sources, because the two lists will be zipped. If sources contains ByteStream objects, their meta will be added to the output Documents.

Returns:

A dictionary with the following keys:

  • documents: List of created Documents

Module openapi_functions

OpenAPIServiceToFunctions

Converts OpenAPI service definitions to a format suitable for OpenAI function calling.

The definition must respect OpenAPI specification 3.0.0 or higher. It can be specified in JSON or YAML format. Each function must have: - unique operationId - description - requestBody and/or parameters - schema for the requestBody and/or parameters For more details on OpenAPI specification see the official documentation. For more details on OpenAI function calling see the official documentation.

Usage example:

from haystack.components.converters import OpenAPIServiceToFunctions

converter = OpenAPIServiceToFunctions()
result = converter.run(sources=["path/to/openapi_definition.yaml"])
assert result["functions"]

OpenAPIServiceToFunctions.__init__

def __init__()

Create an OpenAPIServiceToFunctions component.

OpenAPIServiceToFunctions.run

@component.output_types(functions=List[Dict[str, Any]],
                        openapi_specs=List[Dict[str, Any]])
def run(sources: List[Union[str, Path, ByteStream]]) -> Dict[str, Any]

Converts OpenAPI definitions in OpenAI function calling format.

Arguments:

  • sources: File paths or ByteStream objects of OpenAPI definitions (in JSON or YAML format).

Raises:

  • RuntimeError: If the OpenAPI definitions cannot be downloaded or processed.
  • ValueError: If the source type is not recognized or no functions are found in the OpenAPI definitions.

Returns:

A dictionary with the following keys:

  • functions: Function definitions in JSON object format
  • openapi_specs: OpenAPI specs in JSON/YAML object format with resolved references

Module output_adapter

OutputAdaptationException

Exception raised when there is an error during output adaptation.

OutputAdapter

Adapts output of a Component using Jinja templates.

Usage example:

from haystack import Document
from haystack.components.converters import OutputAdapter

adapter = OutputAdapter(template="{{ documents[0].content }}", output_type=str)
documents = [Document(content="Test content"]
result = adapter.run(documents=documents)

assert result["output"] == "Test content"

OutputAdapter.__init__

def __init__(template: str,
             output_type: TypeAlias,
             custom_filters: Optional[Dict[str, Callable]] = None,
             unsafe: bool = False)

Create an OutputAdapter component.

Arguments:

  • template: A Jinja template that defines how to adapt the input data. The variables in the template define the input of this instance. e.g. With this template:
{{ documents[0].content }}

The Component input will be documents.

  • output_type: The type of output this instance will return.
  • custom_filters: A dictionary of custom Jinja filters used in the template.
  • unsafe: Enable execution of arbitrary code in the Jinja template. This should only be used if you trust the source of the template as it can be lead to remote code execution.

OutputAdapter.run

def run(**kwargs)

Renders the Jinja template with the provided inputs.

Arguments:

  • kwargs: Must contain all variables used in the template string.

Raises:

  • OutputAdaptationException: If template rendering fails.

Returns:

A dictionary with the following keys:

  • output: Rendered Jinja template.

OutputAdapter.to_dict

def to_dict() -> Dict[str, Any]

Serializes the component to a dictionary.

Returns:

Dictionary with serialized data.

OutputAdapter.from_dict

@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "OutputAdapter"

Deserializes the component from a dictionary.

Arguments:

  • data: The dictionary to deserialize from.

Returns:

The deserialized component.

Module pdfminer

PDFMinerToDocument

Converts PDF files to Documents.

Uses pdfminer compatible converters to convert PDF files to Documents. https://pdfminersix.readthedocs.io/en/latest/

Usage example:

from haystack.components.converters.pdfminer import PDFMinerToDocument

converter = PDFMinerToDocument()
results = converter.run(sources=["sample.pdf"], meta={"date_added": datetime.now().isoformat()})
documents = results["documents"]
print(documents[0].content)
# 'This is a text from the PDF file.'

PDFMinerToDocument.__init__

def __init__(line_overlap: float = 0.5,
             char_margin: float = 2.0,
             line_margin: float = 0.5,
             word_margin: float = 0.1,
             boxes_flow: Optional[float] = 0.5,
             detect_vertical: bool = True,
             all_texts: bool = False,
             store_full_path: bool = True) -> None

Create a PDFMinerToDocument component.

Arguments:

  • line_overlap: This parameter determines whether two characters are considered to be on the same line based on the amount of overlap between them. The overlap is calculated relative to the minimum height of both characters.
  • char_margin: Determines whether two characters are part of the same line based on the distance between them. If the distance is less than the margin specified, the characters are considered to be on the same line. The margin is calculated relative to the width of the character.
  • word_margin: Determines whether two characters on the same line are part of the same word based on the distance between them. If the distance is greater than the margin specified, an intermediate space will be added between them to make the text more readable. The margin is calculated relative to the width of the character.
  • line_margin: This parameter determines whether two lines are part of the same paragraph based on the distance between them. If the distance is less than the margin specified, the lines are considered to be part of the same paragraph. The margin is calculated relative to the height of a line.
  • boxes_flow: This parameter determines the importance of horizontal and vertical position when determining the order of text boxes. A value between -1.0 and +1.0 can be set, with -1.0 indicating that only horizontal position matters and +1.0 indicating that only vertical position matters. Setting the value to 'None' will disable advanced layout analysis, and text boxes will be ordered based on the position of their bottom left corner.
  • detect_vertical: This parameter determines whether vertical text should be considered during layout analysis.
  • all_texts: If layout analysis should be performed on text in figures.
  • store_full_path: If True, the full path of the file is stored in the metadata of the document. If False, only the file name is stored.

PDFMinerToDocument.run

@component.output_types(documents=List[Document])
def run(sources: List[Union[str, Path, ByteStream]],
        meta: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None)

Converts PDF files to Documents.

Arguments:

  • sources: List of PDF file paths or ByteStream objects.
  • meta: Optional metadata to attach to the Documents. This value can be either a list of dictionaries or a single dictionary. If it's a single dictionary, its content is added to the metadata of all produced Documents. If it's a list, the length of the list must match the number of sources, because the two lists will be zipped. If sources contains ByteStream objects, their meta will be added to the output Documents.

Returns:

A dictionary with the following keys:

  • documents: Created Documents

Module pptx

PPTXToDocument

Converts PPTX files to Documents.

Usage example:

from haystack.components.converters.pptx import PPTXToDocument

converter = PPTXToDocument()
results = converter.run(sources=["sample.pptx"], meta={"date_added": datetime.now().isoformat()})
documents = results["documents"]
print(documents[0].content)
# 'This is the text from the PPTX file.'

PPTXToDocument.__init__

def __init__(store_full_path: bool = True)

Create an PPTXToDocument component.

Arguments:

  • store_full_path: If True, the full path of the file is stored in the metadata of the document. If False, only the file name is stored.

PPTXToDocument.run

@component.output_types(documents=List[Document])
def run(sources: List[Union[str, Path, ByteStream]],
        meta: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None)

Converts PPTX files to Documents.

Arguments:

  • sources: List of file paths or ByteStream objects.
  • meta: Optional metadata to attach to the Documents. This value can be either a list of dictionaries or a single dictionary. If it's a single dictionary, its content is added to the metadata of all produced Documents. If it's a list, the length of the list must match the number of sources, because the two lists will be zipped. If sources contains ByteStream objects, their meta will be added to the output Documents.

Returns:

A dictionary with the following keys:

  • documents: Created Documents

Module pypdf

PyPDFConverter

A protocol that defines a converter which takes a PdfReader object and converts it into a Document object.

This is deprecated and will be removed in Haystack 2.9.0. For in-depth customization of the conversion process, consider implementing a custom component.

PyPDFExtractionMode

The mode to use for extracting text from a PDF.

PyPDFExtractionMode.__str__

def __str__() -> str

Convert a PyPDFExtractionMode enum to a string.

PyPDFExtractionMode.from_str

@staticmethod
def from_str(string: str) -> "PyPDFExtractionMode"

Convert a string to a PyPDFExtractionMode enum.

PyPDFToDocument

Converts PDF files to documents your pipeline can query.

This component uses the PyPDF library. You can attach metadata to the resulting documents.

Usage example

from haystack.components.converters.pypdf import PyPDFToDocument

converter = PyPDFToDocument()
results = converter.run(sources=["sample.pdf"], meta={"date_added": datetime.now().isoformat()})
documents = results["documents"]
print(documents[0].content)
# 'This is a text from the PDF file.'

PyPDFToDocument.__init__

def __init__(converter: Optional[PyPDFConverter] = None,
             *,
             extraction_mode: Union[
                 str, PyPDFExtractionMode] = PyPDFExtractionMode.PLAIN,
             plain_mode_orientations: tuple = (0, 90, 180, 270),
             plain_mode_space_width: float = 200.0,
             layout_mode_space_vertically: bool = True,
             layout_mode_scale_weight: float = 1.25,
             layout_mode_strip_rotated: bool = True,
             layout_mode_font_height_weight: float = 1.0,
             store_full_path: bool = True)

Create an PyPDFToDocument component.

Arguments:

  • converter: An instance of a PyPDFConverter compatible class. This is deprecated and will be removed in Haystack 2.9.0. For in-depth customization of the conversion process, consider implementing a custom component.

All the following parameters are applied only if converter is None.

  • extraction_mode: The mode to use for extracting text from a PDF. Layout mode is an experimental mode that adheres to the rendered layout of the PDF.
  • plain_mode_orientations: Tuple of orientations to look for when extracting text from a PDF in plain mode. Ignored if extraction_mode is PyPDFExtractionMode.LAYOUT.
  • plain_mode_space_width: Forces default space width if not extracted from font. Ignored if extraction_mode is PyPDFExtractionMode.LAYOUT.
  • layout_mode_space_vertically: Whether to include blank lines inferred from y distance + font height. Ignored if extraction_mode is PyPDFExtractionMode.PLAIN.
  • layout_mode_scale_weight: Multiplier for string length when calculating weighted average character width. Ignored if extraction_mode is PyPDFExtractionMode.PLAIN.
  • layout_mode_strip_rotated: Layout mode does not support rotated text. Set to False to include rotated text anyway. If rotated text is discovered, layout will be degraded and a warning will be logged. Ignored if extraction_mode is PyPDFExtractionMode.PLAIN.
  • layout_mode_font_height_weight: Multiplier for font height when calculating blank line height. Ignored if extraction_mode is PyPDFExtractionMode.PLAIN.
  • store_full_path: If True, the full path of the file is stored in the metadata of the document. If False, only the file name is stored.

PyPDFToDocument.to_dict

def to_dict()

Serializes the component to a dictionary.

Returns:

Dictionary with serialized data.

PyPDFToDocument.from_dict

@classmethod
def from_dict(cls, data)

Deserializes the component from a dictionary.

Arguments:

  • data: Dictionary with serialized data.

Returns:

Deserialized component.

PyPDFToDocument.run

@component.output_types(documents=List[Document])
def run(sources: List[Union[str, Path, ByteStream]],
        meta: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None)

Converts PDF files to documents.

Arguments:

  • sources: List of file paths or ByteStream objects to convert.
  • meta: Optional metadata to attach to the documents. This value can be a list of dictionaries or a single dictionary. If it's a single dictionary, its content is added to the metadata of all produced documents. If it's a list, its length must match the number of sources, as they are zipped together. For ByteStream objects, their meta is added to the output documents.

Returns:

A dictionary with the following keys:

  • documents: A list of converted documents.

Module tika

XHTMLParser

Custom parser to extract pages from Tika XHTML content.

XHTMLParser.handle_starttag

def handle_starttag(tag: str, attrs: List[tuple])

Identify the start of a page div.

XHTMLParser.handle_endtag

def handle_endtag(tag: str)

Identify the end of a page div.

XHTMLParser.handle_data

def handle_data(data: str)

Populate the page content.

TikaDocumentConverter

Converts files of different types to Documents.

This component uses Apache Tika for parsing the files and, therefore, requires a running Tika server. For more options on running Tika, see the official documentation.

Usage example:

from haystack.components.converters.tika import TikaDocumentConverter

converter = TikaDocumentConverter()
results = converter.run(
    sources=["sample.docx", "my_document.rtf", "archive.zip"],
    meta={"date_added": datetime.now().isoformat()}
)
documents = results["documents"]
print(documents[0].content)
# 'This is a text from the docx file.'

TikaDocumentConverter.__init__

def __init__(tika_url: str = "http://localhost:9998/tika",
             store_full_path: bool = True)

Create a TikaDocumentConverter component.

Arguments:

  • tika_url: Tika server URL.
  • store_full_path: If True, the full path of the file is stored in the metadata of the document. If False, only the file name is stored.

TikaDocumentConverter.run

@component.output_types(documents=List[Document])
def run(sources: List[Union[str, Path, ByteStream]],
        meta: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None)

Converts files to Documents.

Arguments:

  • sources: List of HTML file paths or ByteStream objects.
  • meta: Optional metadata to attach to the Documents. This value can be either a list of dictionaries or a single dictionary. If it's a single dictionary, its content is added to the metadata of all produced Documents. If it's a list, the length of the list must match the number of sources, because the two lists will be zipped. If sources contains ByteStream objects, their meta will be added to the output Documents.

Returns:

A dictionary with the following keys:

  • documents: Created Documents

Module txt

TextFileToDocument

Converts text files to documents your pipeline can query.

By default, it uses UTF-8 encoding when converting files but you can also set custom encoding. It can attach metadata to the resulting documents.

Usage example

from haystack.components.converters.txt import TextFileToDocument

converter = TextFileToDocument()
results = converter.run(sources=["sample.txt"])
documents = results["documents"]
print(documents[0].content)
# 'This is the content from the txt file.'

TextFileToDocument.__init__

def __init__(encoding: str = "utf-8", store_full_path: bool = True)

Creates a TextFileToDocument component.

Arguments:

  • encoding: The encoding of the text files to convert. If the encoding is specified in the metadata of a source ByteStream, it overrides this value.
  • store_full_path: If True, the full path of the file is stored in the metadata of the document. If False, only the file name is stored.

TextFileToDocument.run

@component.output_types(documents=List[Document])
def run(sources: List[Union[str, Path, ByteStream]],
        meta: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None)

Converts text files to documents.

Arguments:

  • sources: List of HTML file paths or ByteStream objects to convert.
  • meta: Optional metadata to attach to the documents. This value can be a list of dictionaries or a single dictionary. If it's a single dictionary, its content is added to the metadata of all produced documents. If it's a list, its length must match the number of sources as they're zipped together. For ByteStream objects, their meta is added to the output documents.

Returns:

A dictionary with the following keys:

  • documents: A list of converted documents.