DocumentationAPI Reference📓 Tutorials🧑‍🍳 Cookbook🤝 Integrations💜 Discord🎨 Studio
API Reference

OpenSearch integration for Haystack

Module haystack_integrations.components.retrievers.opensearch.bm25_retriever

OpenSearchBM25Retriever

Fetches documents from OpenSearchDocumentStore using the keyword-based BM25 algorithm.

BM25 computes a weighted word overlap between the query string and a document to determine its similarity.

OpenSearchBM25Retriever.__init__

def __init__(*,
             document_store: OpenSearchDocumentStore,
             filters: Optional[Dict[str, Any]] = None,
             fuzziness: Union[int, str] = "AUTO",
             top_k: int = 10,
             scale_score: bool = False,
             all_terms_must_match: bool = False,
             filter_policy: Union[str, FilterPolicy] = FilterPolicy.REPLACE,
             custom_query: Optional[Dict[str, Any]] = None,
             raise_on_failure: bool = True)

Creates the OpenSearchBM25Retriever component.

Arguments:

  • document_store: An instance of OpenSearchDocumentStore to use with the Retriever.
  • filters: Filters to narrow down the search for documents in the Document Store.
  • fuzziness: Determines how approximate string matching is applied in full-text queries. This parameter sets the number of character edits (insertions, deletions, or substitutions) required to transform one word into another. For example, the "fuzziness" between the words "wined" and "wind" is 1 because only one edit is needed to match them.

Use "AUTO" (the default) for automatic adjustment based on term length, which is optimal for most scenarios. For detailed guidance, refer to the OpenSearch fuzzy query documentation.

  • top_k: Maximum number of documents to return.

  • scale_score: If True, scales the score of retrieved documents to a range between 0 and 1. This is useful when comparing documents across different indexes.

  • all_terms_must_match: If True, all terms in the query string must be present in the retrieved documents. This is useful when searching for short text where even one term can make a difference.

  • filter_policy: Policy to determine how filters are applied. Possible options:

  • replace: Runtime filters replace initialization filters. Use this policy to change the filtering scope for specific queries.

  • merge: Runtime filters are merged with initialization filters.

  • custom_query: The query containing a mandatory $query and an optional $filters placeholder. An example custom_query:

    {
        "query": {
            "bool": {
                "should": [{"multi_match": {
                    "query": "$query",                 // mandatory query placeholder
                    "type": "most_fields",
                    "fields": ["content", "title"]}}],
                "filter": "$filters"                  // optional filter placeholder
            }
        }
    }
    

An example run() method for this custom_query:

retriever.run(
    query="Why did the revenue increase?",
    filters={
        "operator": "AND",
        "conditions": [
            {"field": "meta.years", "operator": "==", "value": "2019"},
            {"field": "meta.quarters", "operator": "in", "value": ["Q1", "Q2"]},
        ],
    },
)
  • raise_on_failure: Whether to raise an exception if the API call fails. Otherwise log a warning and return an empty list.

Raises:

  • ValueError: If document_store is not an instance of OpenSearchDocumentStore.

OpenSearchBM25Retriever.to_dict

def to_dict() -> Dict[str, Any]

Serializes the component to a dictionary.

Returns:

Dictionary with serialized data.

OpenSearchBM25Retriever.from_dict

@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "OpenSearchBM25Retriever"

Deserializes the component from a dictionary.

Arguments:

  • data: Dictionary to deserialize from.

Returns:

Deserialized component.

OpenSearchBM25Retriever.run

@component.output_types(documents=List[Document])
def run(query: str,
        filters: Optional[Dict[str, Any]] = None,
        all_terms_must_match: Optional[bool] = None,
        top_k: Optional[int] = None,
        fuzziness: Optional[Union[int, str]] = None,
        scale_score: Optional[bool] = None,
        custom_query: Optional[Dict[str, Any]] = None)

Retrieve documents using BM25 retrieval.

Arguments:

  • query: The query string.

  • filters: Filters applied to the retrieved documents. The way runtime filters are applied depends on the filter_policy specified at Retriever's initialization.

  • all_terms_must_match: If True, all terms in the query string must be present in the retrieved documents.

  • top_k: Maximum number of documents to return.

  • fuzziness: Fuzziness parameter for full-text queries to apply approximate string matching. For more information, see OpenSearch fuzzy query.

  • scale_score: If True, scales the score of retrieved documents to a range between 0 and 1. This is useful when comparing documents across different indexes.

  • custom_query: A custom OpenSearch query. It must include a $query and may optionally include a $filters placeholder.

    **An example custom_query:**
    
    ```python
    {
        "query": {
            "bool": {
                "should": [{"multi_match": {
                    "query": "$query",                 // mandatory query placeholder
                    "type": "most_fields",
                    "fields": ["content", "title"]}}],
                "filter": "$filters"                  // optional filter placeholder
            }
        }
    }
    ```
    

For this custom_query, a sample run() could be:

retriever.run(
    query="Why did the revenue increase?",
    filters={
        "operator": "AND",
        "conditions": [
            {"field": "meta.years", "operator": "==", "value": "2019"},
            {"field": "meta.quarters", "operator": "in", "value": ["Q1", "Q2"]},
        ],
    },
)

Returns:

A dictionary containing the retrieved documents with the following structure:

  • documents: List of retrieved Documents.

Module haystack_integrations.components.retrievers.opensearch.embedding_retriever

OpenSearchEmbeddingRetriever

Retrieves documents from the OpenSearchDocumentStore using a vector similarity metric.

Must be connected to the OpenSearchDocumentStore to run.

OpenSearchEmbeddingRetriever.__init__

def __init__(*,
             document_store: OpenSearchDocumentStore,
             filters: Optional[Dict[str, Any]] = None,
             top_k: int = 10,
             filter_policy: Union[str, FilterPolicy] = FilterPolicy.REPLACE,
             custom_query: Optional[Dict[str, Any]] = None,
             raise_on_failure: bool = True,
             efficient_filtering: bool = False)

Create the OpenSearchEmbeddingRetriever component.

Arguments:

  • document_store: An instance of OpenSearchDocumentStore to use with the Retriever.

  • filters: Filters applied when fetching documents from the Document Store. Filters are applied during the approximate kNN search to ensure the Retriever returns top_k matching documents.

  • top_k: Maximum number of documents to return.

  • filter_policy: Policy to determine how filters are applied. Possible options:

  • merge: Runtime filters are merged with initialization filters.

  • replace: Runtime filters replace initialization filters. Use this policy to change the filtering scope.

  • custom_query: The custom OpenSearch query containing a mandatory $query_embedding and an optional $filters placeholder.

    **An example custom_query:**
    
    ```python
    {
        "query": {
            "bool": {
                "must": [
                    {
                        "knn": {
                            "embedding": {
                                "vector": "$query_embedding",   // mandatory query placeholder
                                "k": 10000,
                            }
                        }
                    }
                ],
                "filter": "$filters"                            // optional filter placeholder
            }
        }
    }
    ```
    

For this custom_query, an example run() could be:

retriever.run(
    query_embedding=embedding,
    filters={
        "operator": "AND",
        "conditions": [
            {"field": "meta.years", "operator": "==", "value": "2019"},
            {"field": "meta.quarters", "operator": "in", "value": ["Q1", "Q2"]},
        ],
    },
)
  • raise_on_failure: If True, raises an exception if the API call fails. If False, logs a warning and returns an empty list.
  • efficient_filtering: If True, the filter will be applied during the approximate kNN search. This is only supported for knn engines "faiss" and "lucene" and does not work with the default "nmslib".

Raises:

  • ValueError: If document_store is not an instance of OpenSearchDocumentStore.

OpenSearchEmbeddingRetriever.to_dict

def to_dict() -> Dict[str, Any]

Serializes the component to a dictionary.

Returns:

Dictionary with serialized data.

OpenSearchEmbeddingRetriever.from_dict

@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "OpenSearchEmbeddingRetriever"

Deserializes the component from a dictionary.

Arguments:

  • data: Dictionary to deserialize from.

Returns:

Deserialized component.

OpenSearchEmbeddingRetriever.run

@component.output_types(documents=List[Document])
def run(query_embedding: List[float],
        filters: Optional[Dict[str, Any]] = None,
        top_k: Optional[int] = None,
        custom_query: Optional[Dict[str, Any]] = None,
        efficient_filtering: Optional[bool] = None)

Retrieve documents using a vector similarity metric.

Arguments:

  • query_embedding: Embedding of the query.

  • filters: Filters applied when fetching documents from the Document Store. Filters are applied during the approximate kNN search to ensure the Retriever returns top_k matching documents. The way runtime filters are applied depends on the filter_policy selected when initializing the Retriever.

  • top_k: Maximum number of documents to return.

  • custom_query: A custom OpenSearch query containing a mandatory $query_embedding and an optional $filters placeholder.

    **An example custom_query:**
    
    ```python
    {
        "query": {
            "bool": {
                "must": [
                    {
                        "knn": {
                            "embedding": {
                                "vector": "$query_embedding",   // mandatory query placeholder
                                "k": 10000,
                            }
                        }
                    }
                ],
                "filter": "$filters"                            // optional filter placeholder
            }
        }
    }
    ```
    

For this custom_query, an example run() could be:

retriever.run(
    query_embedding=embedding,
    filters={
        "operator": "AND",
        "conditions": [
            {"field": "meta.years", "operator": "==", "value": "2019"},
            {"field": "meta.quarters", "operator": "in", "value": ["Q1", "Q2"]},
        ],
    },
)
  • efficient_filtering: If True, the filter will be applied during the approximate kNN search. This is only supported for knn engines "faiss" and "lucene" and does not work with the default "nmslib".

Returns:

Dictionary with key "documents" containing the retrieved Documents.

  • documents: List of Document similar to query_embedding.

Module haystack_integrations.document_stores.opensearch.document_store

OpenSearchDocumentStore

OpenSearchDocumentStore.__init__

def __init__(*,
             hosts: Optional[Hosts] = None,
             index: str = "default",
             max_chunk_bytes: int = DEFAULT_MAX_CHUNK_BYTES,
             embedding_dim: int = 768,
             return_embedding: bool = False,
             method: Optional[Dict[str, Any]] = None,
             mappings: Optional[Dict[str, Any]] = None,
             settings: Optional[Dict[str, Any]] = DEFAULT_SETTINGS,
             create_index: bool = True,
             http_auth: Any = None,
             use_ssl: Optional[bool] = None,
             verify_certs: Optional[bool] = None,
             timeout: Optional[int] = None,
             **kwargs)

Creates a new OpenSearchDocumentStore instance.

The embeddings_dim, method, mappings, and settings arguments are only used if the index does not exists and needs to be created. If the index already exists, its current configurations will be used.

For more information on connection parameters, see the official OpenSearch documentation

Arguments:

  • hosts: List of hosts running the OpenSearch client. Defaults to None
  • index: Name of index in OpenSearch, if it doesn't exist it will be created. Defaults to "default"
  • max_chunk_bytes: Maximum size of the requests in bytes. Defaults to 100MB
  • embedding_dim: Dimension of the embeddings. Defaults to 768
  • return_embedding: Whether to return the embedding of the retrieved Documents.
  • method: The method definition of the underlying configuration of the approximate k-NN algorithm. Please see the official OpenSearch docs for more information. Defaults to None
  • mappings: The mapping of how the documents are stored and indexed. Please see the official OpenSearch docs for more information. If None, it uses the embedding_dim and method arguments to create default mappings. Defaults to None
  • settings: The settings of the index to be created. Please see the official OpenSearch docs for more information. Defaults to {"index.knn": True}
  • create_index: Whether to create the index if it doesn't exist. Defaults to True
  • http_auth: http_auth param passed to the underying connection class. For basic authentication with default connection class Urllib3HttpConnection this can be
  • a tuple of (username, password)
  • a list of [username, password]
  • a string of "username:password" For AWS authentication with Urllib3HttpConnection pass an instance of AWSAuth. Defaults to None
  • use_ssl: Whether to use SSL. Defaults to None
  • verify_certs: Whether to verify certificates. Defaults to None
  • timeout: Timeout in seconds. Defaults to None
  • **kwargs: Optional arguments that OpenSearch takes. For the full list of supported kwargs, see the official OpenSearch reference

OpenSearchDocumentStore.create_index

def create_index(index: Optional[str] = None,
                 mappings: Optional[Dict[str, Any]] = None,
                 settings: Optional[Dict[str, Any]] = None) -> None

Creates an index in OpenSearch.

Note that this method ignores the create_index argument from the constructor.

Arguments:

  • index: Name of the index to create. If None, the index name from the constructor is used.
  • mappings: The mapping of how the documents are stored and indexed. Please see the official OpenSearch docs for more information. If None, the mappings from the constructor are used.
  • settings: The settings of the index to be created. Please see the official OpenSearch docs for more information. If None, the settings from the constructor are used.

OpenSearchDocumentStore.to_dict

def to_dict() -> Dict[str, Any]

Serializes the component to a dictionary.

Returns:

Dictionary with serialized data.

OpenSearchDocumentStore.from_dict

@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "OpenSearchDocumentStore"

Deserializes the component from a dictionary.

Arguments:

  • data: Dictionary to deserialize from.

Returns:

Deserialized component.

OpenSearchDocumentStore.count_documents

def count_documents() -> int

Returns how many documents are present in the document store.

OpenSearchDocumentStore.write_documents

def write_documents(documents: List[Document],
                    policy: DuplicatePolicy = DuplicatePolicy.NONE) -> int

Writes Documents to OpenSearch. If policy is not specified or set to DuplicatePolicy.NONE, it will raise an exception if a document with the same ID already exists in the document store.

OpenSearchDocumentStore.delete_documents

def delete_documents(document_ids: List[str]) -> None

Deletes all documents with a matching document_ids from the document store.

Arguments:

  • object_ids: the object_ids to delete

Module haystack_integrations.document_stores.opensearch.filters

normalize_filters

def normalize_filters(filters: Dict[str, Any]) -> Dict[str, Any]

Converts Haystack filters in OpenSearch compatible filters.