Components related to Tool Calling.
Module tool_invoker
ToolInvokerError
Base exception class for ToolInvoker errors.
ToolNotFoundException
Exception raised when a tool is not found in the list of available tools.
StringConversionError
Exception raised when the conversion of a tool result to a string fails.
ToolOutputMergeError
Exception raised when merging tool outputs into state fails.
ToolOutputMergeError.from_exception
@classmethod
def from_exception(cls, tool_name: str,
error: Exception) -> "ToolOutputMergeError"
Create a ToolOutputMergeError from an exception.
ToolInvoker
Invokes tools based on prepared tool calls and returns the results as a list of ChatMessage objects.
Also handles reading/writing from a shared State.
At initialization, the ToolInvoker component is provided with a list of available tools.
At runtime, the component processes a list of ChatMessage object containing tool calls
and invokes the corresponding tools.
The results of the tool invocations are returned as a list of ChatMessage objects with tool role.
Usage example:
from haystack.dataclasses import ChatMessage, ToolCall
from haystack.tools import Tool
from haystack.components.tools import ToolInvoker
# Tool definition
def dummy_weather_function(city: str):
return f"The weather in {city} is 20 degrees."
parameters = {"type": "object",
"properties": {"city": {"type": "string"}},
"required": ["city"]}
tool = Tool(name="weather_tool",
description="A tool to get the weather",
function=dummy_weather_function,
parameters=parameters)
# Usually, the ChatMessage with tool_calls is generated by a Language Model
# Here, we create it manually for demonstration purposes
tool_call = ToolCall(
tool_name="weather_tool",
arguments={"city": "Berlin"}
)
message = ChatMessage.from_assistant(tool_calls=[tool_call])
# ToolInvoker initialization and run
invoker = ToolInvoker(tools=[tool])
result = invoker.run(messages=[message])
print(result)
>> {
>> 'tool_messages': [
>> ChatMessage(
>> _role=<ChatRole.TOOL: 'tool'>,
>> _content=[
>> ToolCallResult(
>> result='"The weather in Berlin is 20 degrees."',
>> origin=ToolCall(
>> tool_name='weather_tool',
>> arguments={'city': 'Berlin'},
>> id=None
>> )
>> )
>> ],
>> _meta={}
>> )
>> ]
>> }
Usage example with a Toolset:
from haystack.dataclasses import ChatMessage, ToolCall
from haystack.tools import Tool, Toolset
from haystack.components.tools import ToolInvoker
# Tool definition
def dummy_weather_function(city: str):
return f"The weather in {city} is 20 degrees."
parameters = {"type": "object",
"properties": {"city": {"type": "string"}},
"required": ["city"]}
tool = Tool(name="weather_tool",
description="A tool to get the weather",
function=dummy_weather_function,
parameters=parameters)
# Create a Toolset
toolset = Toolset([tool])
# Usually, the ChatMessage with tool_calls is generated by a Language Model
# Here, we create it manually for demonstration purposes
tool_call = ToolCall(
tool_name="weather_tool",
arguments={"city": "Berlin"}
)
message = ChatMessage.from_assistant(tool_calls=[tool_call])
# ToolInvoker initialization and run with Toolset
invoker = ToolInvoker(tools=toolset)
result = invoker.run(messages=[message])
print(result)
<a id="tool_invoker.ToolInvoker.__init__"></a>
#### ToolInvoker.\_\_init\_\_
```python
def __init__(tools: ToolsType,
raise_on_failure: bool = True,
convert_result_to_json_string: bool = False,
streaming_callback: Optional[StreamingCallbackT] = None,
*,
enable_streaming_callback_passthrough: bool = False,
max_workers: int = 4)
Initialize the ToolInvoker component.
Arguments:
tools: A list of Tool and/or Toolset objects, or a Toolset instance that can resolve tools.raise_on_failure: If True, the component will raise an exception in case of errors (tool not found, tool invocation errors, tool result conversion errors). If False, the component will return a ChatMessage object witherror=Trueand a description of the error inresult.convert_result_to_json_string: If True, the tool invocation result will be converted to a string usingjson.dumps. If False, the tool invocation result will be converted to a string usingstr.streaming_callback: A callback function that will be called to emit tool results. Note that the result is only emitted once it becomes available — it is not streamed incrementally in real time.enable_streaming_callback_passthrough: If True, thestreaming_callbackwill be passed to the tool invocation if the tool supports it. This allows tools to stream their results back to the client. Note that this requires the tool to have astreaming_callbackparameter in itsinvokemethod signature. If False, thestreaming_callbackwill not be passed to the tool invocation.max_workers: The maximum number of workers to use in the thread pool executor. This also decides the maximum number of concurrent tool invocations.
Raises:
ValueError: If no tools are provided or if duplicate tool names are found.
ToolInvoker.warm_up
def warm_up()
Warm up the tool invoker.
This will warm up the tools registered in the tool invoker. This method is idempotent and will only warm up the tools once.
ToolInvoker.run
@component.output_types(tool_messages=list[ChatMessage], state=State)
def run(messages: list[ChatMessage],
state: Optional[State] = None,
streaming_callback: Optional[StreamingCallbackT] = None,
*,
enable_streaming_callback_passthrough: Optional[bool] = None,
tools: Optional[ToolsType] = None) -> dict[str, Any]
Processes ChatMessage objects containing tool calls and invokes the corresponding tools, if available.
Arguments:
messages: A list of ChatMessage objects.state: The runtime state that should be used by the tools.streaming_callback: A callback function that will be called to emit tool results. Note that the result is only emitted once it becomes available — it is not streamed incrementally in real time.enable_streaming_callback_passthrough: If True, thestreaming_callbackwill be passed to the tool invocation if the tool supports it. This allows tools to stream their results back to the client. Note that this requires the tool to have astreaming_callbackparameter in itsinvokemethod signature. If False, thestreaming_callbackwill not be passed to the tool invocation. If None, the value from the constructor will be used.tools: A list of Tool and/or Toolset objects, or a single Toolset for which the model can prepare calls. If set, it will override thetoolsparameter provided during initialization.
Raises:
ToolNotFoundException: If the tool is not found in the list of available tools andraise_on_failureis True.ToolInvocationError: If the tool invocation fails andraise_on_failureis True.StringConversionError: If the conversion of the tool result to a string fails andraise_on_failureis True.ToolOutputMergeError: If merging tool outputs into state fails andraise_on_failureis True.
Returns:
A dictionary with the key tool_messages containing a list of ChatMessage objects with tool role.
Each ChatMessage objects wraps the result of a tool invocation.
ToolInvoker.run_async
@component.output_types(tool_messages=list[ChatMessage], state=State)
async def run_async(
messages: list[ChatMessage],
state: Optional[State] = None,
streaming_callback: Optional[StreamingCallbackT] = None,
*,
enable_streaming_callback_passthrough: Optional[bool] = None,
tools: Optional[ToolsType] = None) -> dict[str, Any]
Asynchronously processes ChatMessage objects containing tool calls.
Multiple tool calls are performed concurrently.
Arguments:
messages: A list of ChatMessage objects.state: The runtime state that should be used by the tools.streaming_callback: An asynchronous callback function that will be called to emit tool results. Note that the result is only emitted once it becomes available — it is not streamed incrementally in real time.enable_streaming_callback_passthrough: If True, thestreaming_callbackwill be passed to the tool invocation if the tool supports it. This allows tools to stream their results back to the client. Note that this requires the tool to have astreaming_callbackparameter in itsinvokemethod signature. If False, thestreaming_callbackwill not be passed to the tool invocation. If None, the value from the constructor will be used.tools: A list of Tool and/or Toolset objects, or a single Toolset for which the model can prepare calls. If set, it will override thetoolsparameter provided during initialization.
Raises:
ToolNotFoundException: If the tool is not found in the list of available tools andraise_on_failureis True.ToolInvocationError: If the tool invocation fails andraise_on_failureis True.StringConversionError: If the conversion of the tool result to a string fails andraise_on_failureis True.ToolOutputMergeError: If merging tool outputs into state fails andraise_on_failureis True.
Returns:
A dictionary with the key tool_messages containing a list of ChatMessage objects with tool role.
Each ChatMessage objects wraps the result of a tool invocation.
ToolInvoker.to_dict
def to_dict() -> dict[str, Any]
Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
ToolInvoker.from_dict
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "ToolInvoker"
Deserializes the component from a dictionary.
Arguments:
data: The dictionary to deserialize from.
Returns:
The deserialized component.
