MetaFieldGroupingRanker
Reorder the documents by grouping them based on metadata keys.
Most common position in a pipeline | In a query pipeline, after a component that returns a list of documents, such as a Retriever |
Mandatory init variables | "group_by": The name of the meta field to group by |
Mandatory run variables | “documents”: A list of documents to group |
Output variables | “documents”: A grouped list of documents |
API reference | Rankers |
GitHub link | https://github.com/deepset-ai/haystack/blob/main/haystack/components/rankers/meta_field_grouping_ranker.py |
Overview
The MetaFieldGroupingRanker
component groups documents by a primary metadata key group_by
, and subgroups them with an optional secondary key, subgroup_by
.
Within each group or subgroup, the component can also sort documents by a metadata key sort_docs_by
.
The output is a flat list of documents ordered by group_by
and subgroup_by
values. Any documents without a group are placed at the end of the list.
The component helps improve the efficiency and performance of subsequent processing by an LLM.
Usage
On its own
from haystack.components.rankers import MetaFieldGroupingRanker
from haystack import Document
docs = [
Document(content="JavaScript is popular", meta={"group": "42", "split_id": 7, "subgroup": "subB"}),
Document(content="Python is popular", meta={"group": "42", "split_id": 4, "subgroup": "subB"}),
Document(content="A chromosome is DNA", meta={"group": "314", "split_id": 2, "subgroup": "subC"}),
Document(content="An octopus has three hearts", meta={"group": "11", "split_id": 2, "subgroup": "subD"}),
Document(content="Java is popular", meta={"group": "42", "split_id": 3, "subgroup": "subB"}),
]
ranker = MetaFieldGroupingRanker(group_by="group", subgroup_by="subgroup", sort_docs_by="split_id")
result = ranker.run(documents=docs)
print(result["documents"])
In a pipeline
The following pipeline uses the MetaFieldGroupingRanker
to organize documents by certain meta fields while sorting by page number, then formats these organized documents into a chat message which is passed to the OpenAIChatGenerator
to create a structured explanation of the content.
from haystack import Pipeline
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.components.rankers import MetaFieldGroupingRanker
from haystack.dataclasses import Document, ChatMessage
docs = [
Document(
content="Chapter 1: Introduction to Python",
meta={"chapter": "1", "section": "intro", "page": 1}
),
Document(
content="Chapter 2: Basic Data Types",
meta={"chapter": "2", "section": "basics", "page": 15}
),
Document(
content="Chapter 1: Python Installation",
meta={"chapter": "1", "section": "setup", "page": 5}
),
]
ranker = MetaFieldGroupingRanker(
group_by="chapter",
subgroup_by="section",
sort_docs_by="page"
)
chat_generator = OpenAIChatGenerator(
generation_kwargs={
"temperature": 0.7,
"max_tokens": 500
}
)
# First run the ranker
ranked_result = ranker.run(documents=docs)
ranked_docs = ranked_result["documents"]
# Create chat messages with the ranked documents
messages = [
ChatMessage.from_system("You are a helpful programming tutor."),
ChatMessage.from_user(
f"Here are the course documents in order:\n" +
"\n".join([f"- {doc.content}" for doc in ranked_docs]) +
"\n\nBased on these documents, explain the structure of this Python course."
)
]
# Create and run pipeline for just the chat generator
pipeline = Pipeline()
pipeline.add_component("chat_generator", chat_generator)
result = pipeline.run(
data={
"chat_generator": {
"messages": messages
}
}
)
print(result["chat_generator"]["replies"][0])
Updated 15 days ago