DocumentationAPI Reference📓 Tutorials🧑‍🍳 Cookbook🤝 Integrations💜 Discord🎨 Studio (Waitlist)
Documentation

DocumentLanguageClassifier

Use this component to classify documents by language and add language information to metadata.

Most common position in a pipelineBefore MetadataRouter
Mandatory run variables"documents": A list of documents
Output variables"documents": A list of documents
API referenceClassifiers
GitHub linkhttps://github.com/deepset-ai/haystack/blob/main/haystack/components/classifiers/document_language_classifier.py

Overview

DocumentLanguageClassifier classifies the language of documents and adds the detected language to their metadata. If a document's text does not match any of the languages specified at initialization, it is classified as "unmatched". By default, the classifier classifies for English (”en”) documents, with the rest being classified as “unmatched”.

The set of supported languages can be specified in the init method with the languages variable, using ISO codes.

To route your documents to various branches of the pipeline based on the language, use MetadataRouter component right after DocumentLanguageClassifier.

For classifying and then routing plain text using the same logic, use the TextLanguageRouter component instead.

Usage

Install the langdetectpackage to use the DocumentLanguageClassifiercomponent:

pip install langdetect

On its own

Below, we are using the DocumentLanguageClassifier to classify English and German documents:

from haystack.components.classifiers import DocumentLanguageClassifier
from haystack import Document

documents = [
    Document(content="Mein Name ist Jean und ich wohne in Paris."),
    Document(content="Mein Name ist Mark und ich wohne in Berlin."),
    Document(content="Mein Name ist Giorgio und ich wohne in Rome."),
    Document(content="My name is Pierre and I live in Paris"),
    Document(content="My name is Paul and I live in Berlin."),
    Document(content="My name is Alessia and I live in Rome."),
]

document_classifier = DocumentLanguageClassifier(languages = ["en", "de"])
document_classifier.run(documents = documents)

In a pipeline

Below, we are using the DocumentLanguageClassifier in an indexing pipeline that indexes English and German documents into two difference indexes in an InMemoryDocumentStore, using embedding models for each language.

from haystack import Pipeline
from haystack import Document
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.classifiers import DocumentLanguageClassifier
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
from haystack.components.writers import DocumentWriter
from haystack.components.routers import MetadataRouter

document_store_en = InMemoryDocumentStore()
document_store_de = InMemoryDocumentStore()

document_classifier = DocumentLanguageClassifier(languages = ["en", "de"])
metadata_router = MetadataRouter(rules={"en": {"language": {"$eq": "en"}}, "de": {"language": {"$eq": "de"}}})
english_embedder = SentenceTransformersDocumentEmbedder()
german_embedder = SentenceTransformersDocumentEmbedder(model="PM-AI/bi-encoder_msmarco_bert-base_german")
en_writer = DocumentWriter(document_store = document_store_en)
de_writer = DocumentWriter(document_store = document_store_de)

indexing_pipeline = Pipeline()
indexing_pipeline.add_component(instance=document_classifier, name="document_classifier")
indexing_pipeline.add_component(instance=metadata_router, name="metadata_router")
indexing_pipeline.add_component(instance=english_embedder, name="english_embedder")
indexing_pipeline.add_component(instance=german_embedder, name="german_embedder")
indexing_pipeline.add_component(instance=en_writer, name="en_writer")
indexing_pipeline.add_component(instance=de_writer, name="de_writer")

indexing_pipeline.connect("document_classifier.documents", "metadata_router.documents")
indexing_pipeline.connect("metadata_router.en", "english_embedder.documents")
indexing_pipeline.connect("metadata_router.de", "german_embedder.documents")
indexing_pipeline.connect("english_embedder", "en_writer")
indexing_pipeline.connect("german_embedder", "de_writer")

indexing_pipeline.run({"document_classifier": {"documents": [Document(content="This is an English sentence."), Document(content="Dies ist ein deutscher Satz.")]}})

Related Links

See the parameters details in our API reference: