OpenAIDocumentEmbedder
OpenAIDocumentEmbedder computes the embeddings of a list of documents and stores the obtained vectors in the embedding field of each document. It uses OpenAI embedding models.
The vectors computed by this component are necessary to perform embedding retrieval on a collection of documents. At retrieval time, the vector representing the query is compared with those of the documents to find the most similar or relevant documents.
Most common position in a pipeline | Before a DocumentWriter in an indexing pipeline |
Mandatory init variables | "api_key": An OpenAI API key. Can be set with OPENAI_API_KEY env var. |
Mandatory run variables | "documents": A list of documents |
Output variables | "documents": A list of documents (enriched with embeddings) "meta": A dictionary of metadata |
API reference | Embedders |
GitHub link | https://github.com/deepset-ai/haystack/blob/main/haystack/components/embedders/openai_document_embedder.py |
Overview
To see the list of compatible OpenAI embedding models, head over to OpenAI documentation. The default model for OpenAIDocumentEmbedder
is text-embedding-ada-002
. You can specify another model with the model
parameter when initializing this component.
This component should be used to embed a list of documents. To embed a string, use the OpenAITextEmbedder.
The component uses an OPENAI_API_KEY
environment variable by default. Otherwise, you can pass an API key at initialization with api_key
:
embedder = OpenAIDocumentEmbedder(api_key=Secret.from_token("<your-api-key>"))
Embedding Metadata
Text documents often come with a set of metadata. If they are distinctive and semantically meaningful, you can embed them along with the text of the document to improve retrieval.
You can do this easily by using the Document Embedder:
from haystack import Document
from haystack.components.embedders import OpenAIDocumentEmbedder
doc = Document(content="some text",meta={"title": "relevant title", "page number": 18})
embedder = OpenAIDocumentEmbedder(meta_fields_to_embed=["title"])
docs_w_embeddings = embedder.run(documents=[doc])["documents"]
Usage
On its own
Here is how you can use the component on its own:
from haystack.components.embedders import OpenAIDocumentEmbedder
doc = Document(content="I love pizza!")
document_embedder = OpenAIDocumentEmbedder(api_key=Secret.from_token("<your-api-key>"))
result = document_embedder.run([doc])
print(result['documents'][0].embedding)
# [0.017020374536514282, -0.023255806416273117, ...]
We recommend setting OPENAI_API_KEY as an environment variable instead of setting it as a parameter.
In a pipeline
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.embedders import OpenAITextEmbedder, OpenAIDocumentEmbedder
from haystack.components.writers import DocumentWriter
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
documents = [Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities")]
indexing_pipeline = Pipeline()
indexing_pipeline.add_component("embedder", OpenAIDocumentEmbedder())
indexing_pipeline.add_component("writer", DocumentWriter(document_store=document_store))
indexing_pipeline.connect("embedder", "writer")
indexing_pipeline.run({"embedder": {"documents": documents}})
query_pipeline = Pipeline()
query_pipeline.add_component("text_embedder", OpenAITextEmbedder())
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
query = "Who lives in Berlin?"
result = query_pipeline.run({"text_embedder":{"text": query}})
print(result['retriever']['documents'][0])
# Document(id=..., mimetype: 'text/plain',
# text: 'My name is Wolfgang and I live in Berlin')
Updated 3 months ago