JinaDocumentEmbedder
This component computes the embeddings of a list of documents and stores the obtained vectors in the embedding field of each document. It uses Jina AI Embeddings models. The vectors computed by this component are necessary to perform embedding retrieval on a collection of documents. At retrieval time, the vector representing the query is compared with those of the documents to find the most similar or relevant documents.
Most common position in a pipeline | Before a DocumentWriter in an indexing pipeline |
Mandatory init variables | "api_key": The Jina API key. Can be set with JINA_API_KEY env var. |
Mandatory run variables | “documents”: A list of documents |
Output variables | “documents”: A list of documents (enriched with embeddings) ”meta”: A dictionary of metadata |
API reference | Jina |
GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/jina |
Overview
JinaDocumentEmbedder
enriches the metadata of documents with an embedding of their content. To embed a string, you should use the JinaTextEmbedder
. To see the list of compatible Jina Embeddings models, head to Jina AI’s website. The default model for JinaDocumentEmbedder
is jina-embeddings-v2-base-en
.
To start using this integration with Haystack, install the package with:
pip install jina-haystack
The component uses a JINA_API_KEY
environment variable by default. Otherwise, you can pass an API key at initialization with api_key
:
embedder = JinaDocumentEmbedder(api_key=Secret.from_token("<your-api-key>"))
To get a Jina Embeddings API key, head to https://jina.ai/embeddings/.
Embedding Metadata
Text documents often come with a set of metadata. If they are distinctive and semantically meaningful, you can embed them along with the text of the document to improve retrieval.
You can do this easily by using the Document Embedder:
from haystack import Document
from haystack_integrations.components.embedders.jina import JinaDocumentEmbedder
doc = Document(content="some text",
meta={"title": "relevant title",
"page number": 18})
embedder = JinaDocumentEmbedder(api_key=Secret.from_token("<your-api-key>"), meta_fields_to_embed=["title"])
docs_w_embeddings = embedder.run(documents=[doc])["documents"]
Usage
On its own
Here is how you can use the component on its own:
from haystack_integrations.components.embedders.jina import JinaDocumentEmbedder
doc = Document(content="I love pizza!")
document_embedder = JinaDocumentEmbedder(api_key=Secret.from_token("<your-api-key>"))
result = document_embedder.run([doc])
print(result['documents'][0].embedding)
# [0.017020374536514282, -0.023255806416273117, ...]
We recommend setting JINA_API_KEY as an environment variable instead of setting it as a parameter.
In a pipeline
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack_integrations.components.embedders.jina import JinaDocumentEmbedder
from haystack_integrations.components.embedders.jina import JinaTextEmbedder
from haystack.components.writers import DocumentWriter
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
documents = [Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities")]
indexing_pipeline = Pipeline()
indexing_pipeline.add_component("embedder", JinaDocumentEmbedder(api_key=Secret.from_token("<your-api-key>")))
indexing_pipeline.add_component("writer", DocumentWriter(document_store=document_store))
indexing_pipeline.connect("embedder", "writer")
indexing_pipeline.run({"embedder": {"documents": documents}})
query_pipeline = Pipeline()
query_pipeline.add_component("text_embedder", JinaTextEmbedder(api_key=Secret.from_token("<your-api-key>")))
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
query = "Who lives in Berlin?"
result = query_pipeline.run({"text_embedder":{"text": query}})
print(result['retriever']['documents'][0])
# Document(id=..., mimetype: 'text/plain',
# text: 'My name is Wolfgang and I live in Berlin')
Additional References
🧑🍳 Cookbook: Using the Jina-embeddings-v2-base-en model in a Haystack RAG pipeline for legal document analysis
Updated about 1 month ago