FilterRetriever
Use this Retriever with any Document Store to get the Documents that match specific filters.
Most common position in a pipeline | At the beginning of a Pipeline |
Mandatory init variables | "document_store": An instance of a Document Store |
Mandatory run variables | “filters”: A dictionary of filters in the same syntax supported by the Document Stores |
Output variables | “documents”: All the documents that match these filters |
API reference | Retrievers |
GitHub link | https://github.com/deepset-ai/haystack/blob/main/haystack/components/retrievers/filter_retriever.py |
Overview
FilterRetriever
retrieves Documents that match the provided filters.
It’s a special kind of Retriever – it can work with all Document Stores instead of being specialized to work with only one.
However, as every other Retriever, it needs some Document Store at initialization time, and it will perform filtering on the content of that instance only.
Therefore, it can be used as any other Retriever in a Pipeline.
Pay attention when using FilterRetriever
on a Document Store that contains many Documents, as FilterRetriever
will return all documents that match the filters. The run
command with no filters can easily overwhelm other components in the Pipeline (for example, Generators):
filter_retriever.run({})
Another thing to note is that FilterRetriever
does not score your Documents or rank them in any way. If you need to rank the Documents by similarity to a query, consider using Ranker components.
Usage
On its own
from haystack import Document
from haystack.components.retrievers import FilterRetriever
from haystack.document_stores.in_memory import InMemoryDocumentStore
docs = [
Document(content="Python is a popular programming language", meta={"lang": "en"}),
Document(content="python ist eine beliebte Programmiersprache", meta={"lang": "de"}),
]
doc_store = InMemoryDocumentStore()
doc_store.write_documents(docs)
retriever = FilterRetriever(doc_store)
result = retriever.run(filters={"field": "lang", "operator": "==", "value": "en"})
assert "documents" in result
assert len(result["documents"]) == 1
assert result["documents"][0].content == "Python is a popular programming language"
In a RAG pipeline
Set your OPENAI_API_KEY
as an environment variable and then run the following code:
from haystack.components.retrievers.filter_retriever import FilterRetriever
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack import Document, Pipeline
from haystack.components.builders.answer_builder import AnswerBuilder
from haystack.components.builders.prompt_builder import PromptBuilder
from haystack.components.generators import OpenAIGenerator
from haystack.document_stores.types import DuplicatePolicy
import os
api_key = os.environ['OPENAI_API_KEY']
document_store = InMemoryDocumentStore()
documents = [
Document(content="Mark lives in Berlin.", meta={"year": 2018}),
Document(content="Mark lives in Paris.", meta={"year": 2021}),
Document(content="Mark is Danish.", meta={"year": 2021}),
Document(content="Mark lives in New York.", meta={"year": 2023}),
]
document_store.write_documents(documents=documents)
# Create a RAG query pipeline
prompt_template = """
Given these documents, answer the question.\nDocuments:
{% for doc in documents %}
{{ doc.content }}
{% endfor %}
\nQuestion: {{question}}
\nAnswer:
"""
rag_pipeline = Pipeline()
rag_pipeline.add_component(name="retriever", instance=FilterRetriever(document_store=document_store))
rag_pipeline.add_component(instance=PromptBuilder(template=prompt_template), name="prompt_builder")
rag_pipeline.add_component(instance=OpenAIGenerator(api_key=api_key), name="llm")
rag_pipeline.connect("retriever", "prompt_builder.documents")
rag_pipeline.connect("prompt_builder", "llm")
result = rag_pipeline.run(
{
"retriever": {"filters": {"field": "year", "operator": "==", "value": 2021}},
"prompt_builder": {"question": "Where does Mark live?"},
}
)
print(result['answer_builder']['answers'][0])`
Here’s an example output you might get:
According to the provided documents, Mark lives in Paris.
Updated 3 months ago