DocumentationAPI Reference📓 Tutorials🧑‍🍳 Cookbook🤝 Integrations💜 Discord🎨 Studio
Documentation

AnthropicVertexChatGenerator

This component enables chat completions using AnthropicVertex API.

Most common position in a pipelineAfter a ChatPromptBuilder
Mandatory init variables"region": The region where the Anthropic model is deployed

”project_id”: GCP project ID where the Anthropic model is deployed
Mandatory run variables“messages”: A list of ChatMessage   objects
Output variables“replies”: A list of strings with all the replies generated by the LLM

”meta”: A list of dictionaries with the metadata associated with each reply, such as token count, finish reason, and others
API referenceAnthropic
GitHub linkhttps://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/anthropic

Overview

AnthropicVertexChatGenerator enables text generation using state-of-the-art Claude 3 LLMs using the Anthropic Vertex AI API.
It supports Claude 3.5 Sonnet, Claude 3 Opus, Claude 3 Sonnet, and Claude 3 Haiku models, that are accessible through the Vertex AI API endpoint. For more details about the models, refer to Anthropic Vertex AI documentation.

Parameters

To use the AnthropicVertexChatGenerator, ensure you have a GCP project with Vertex AI enabled. You need to specify your GCP project_id and region.

You can provide these keys in the following ways:

  • The REGION and PROJECT_ID environment variables (recommended)
  • The region and project_id init parameters

Before making requests, you may need to authenticate with GCP using gcloud auth login.

Set your preferred supported Anthropic model with the model parameter when initializing the component. Additionally, ensure that the desired Anthropic model is activated in the Vertex AI Model Garden.

AnthropicVertexChatGenerator requires a prompt to generate text, but you can pass any text generation parameters available in the Anthropic Messaging API method directly to this component using the generation_kwargs parameter, both at initialization and when running the component. For more details on the parameters supported by the Anthropic API, see the Anthropic documentation.

Finally, the component needs a list of ChatMessage objects to operate. ChatMessage is a data class that contains a message, a role (who generated the message, such as userassistantsystemfunction), and optional metadata.

Only text input modality is supported at this time.

Streaming

This ChatGenerator supports streaming the tokens from the LLM directly in output. To do so, pass a function to the streaming_callback init parameter.

Prompt Caching

Prompt caching is a feature for Anthropic LLMs that stores large text inputs for reuse. It allows you to send a large text block once and then refer to it in later requests without resending the entire text.

This feature is particularly useful for coding assistants that need full codebase context and for processing large documents. It can help reduce costs and improve response times.

Here's an example of an instance of AnthropicVertexChatGenerator being initialized with prompt caching and tagging a message to be cached:

from haystack_integrations.components.generators.anthropic import AnthropicVertexChatGenerator
from haystack.dataclasses import ChatMessage

generation_kwargs = {"extra_headers": {"anthropic-beta": "prompt-caching-2024-07-31"}}

claude_llm = AnthropicVertexChatGenerator(
    region="your_region", project_id="test_id", generation_kwargs=generation_kwargs
)

system_message = ChatMessage.from_system("Replace with some long text documents, code or instructions")
system_message.meta["cache_control"] = {"type": "ephemeral"}

messages = [system_message, ChatMessage.from_user("A query about the long text for example")]
result = claude_llm.run(messages)

# and now invoke again with 

messages = [system_message, ChatMessage.from_user("Another query about the long text etc")]
result = claude_llm.run(messages)

# and so on, either invoking component directly or in the pipeline 

For more details, refer to Anthropic's documentation and integration examples.

Usage

Install theanthropic-haystack package to use the AnthropicVertexChatGenerator:

pip install anthropic-haystack

On its own

from haystack_integrations.components.generators.anthropic import AnthropicVertexChatGenerator
from haystack.dataclasses import ChatMessage

messages = [ChatMessage.from_user("What's Natural Language Processing?")]
client = AnthropicVertexChatGenerator(
  model="claude-3-sonnet@20240229",
  project_id="your-project-id", region="us-central1"
)

response = client.run(messages)
print(response)

In a pipeline

You can also use AnthropicVertexChatGeneratorwith the Anthropic chat models in your pipeline.

from haystack import Pipeline
from haystack.components.builders import ChatPromptBuilder
from haystack.dataclasses import ChatMessage
from haystack_integrations.components.generators.anthropic import AnthropicVertexChatGenerator
from haystack.utils import Secret

pipe = Pipeline()
pipe.add_component("prompt_builder", ChatPromptBuilder())
pipe.add_component("llm", AnthropicVertexChatGenerator(project_id="test_id", region="us-central1"))
pipe.connect("prompt_builder", "llm")

country = "Germany"
system_message = ChatMessage.from_system("You are an assistant giving out valuable information to language learners.")
messages = [system_message, ChatMessage.from_user("What's the official language of {{ country }}?")]

res = pipe.run(data={"prompt_builder": {"template_variables": {"country": country}, "template": messages}})
print(res)