MarkdownToDocument
A component that converts Markdown files to documents.
Name | MarkdownToDocument |
Folder path | /converters/ |
Most common position in a pipeline | Before PreProcessors, or right at the beginning of an indexing pipeline |
Mandatory input variables | "sources": Markdown file paths or ByteStream objects |
Output variables | "documents": A list of documents |
Overview
The MarkdownToDocument
component converts Markdown files into documents. You can use it in an indexing pipeline to index the contents of a Markdown file into a Document Store. It takes a list of file paths or ByteStream objects as input and outputs the converted result as a list of documents. Optionally, you can attach metadata to the documents through the meta
input parameter.
When you initialize the component, you can optionally turn off progress bars by setting progress_bar
to False
. If you want to convert the contents of tables into a single line, you can enable that through the table_to_single_line
parameter.
Usage
You need to install markdown-it-py
and mdit_plain packages
to use the MarkdownToDocument
component:
pip install markdown-it-py mdit_plain
On its own
from haystack.components.converters import MarkdownToDocument
converter = MarkdownToDocument()
docs = converter.run(sources=Path("my_file.md"))
In a pipeline
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.converters import MarkdownToDocument
from haystack.components.preprocessors import DocumentCleaner
from haystack.components.preprocessors import DocumentSplitter
from haystack.components.writers import DocumentWriter
document_store = InMemoryDocumentStore()
pipeline = Pipeline()
pipeline.add_component("converter", MarkdownToDocument())
pipeline.add_component("cleaner", DocumentCleaner())
pipeline.add_component("splitter", DocumentSplitter(split_by="sentence", split_length=5))
pipeline.add_component("writer", DocumentWriter(document_store=document_store))
pipeline.connect("converter", "cleaner")
pipeline.connect("cleaner", "splitter")
pipeline.connect("splitter", "writer")
pipeline.run({"converter": {"sources": file_names}})
Updated 7 months ago
See the parameters details in our API reference: