DocumentationAPI Reference📓 Tutorials🧑‍🍳 Cookbook🤝 Integrations💜 Discord🎨 Studio (Waitlist)
Documentation

QdrantHybridRetriever

A Retriever based both on dense and sparse embeddings, compatible with the Qdrant Document Store.

NameQdrantHybridRetriever
Sourcehttps://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/qdrant
Most common position in a pipeline1. After a Text Embedder and before a PromptBuilder in a RAG pipeline
2. The last component in a hybrid search pipeline
3. After a Text Embedder and before an ExtractiveReader in an extractive QA pipeline
Mandatory input variables“query_embedding”: A dense vector representing the query (a list of floats)

“query_sparse_embedding”: A SparseEmbedding object containing a vectorial representation of the query
Output variables“document”: A list of documents

Overview

The QdrantHybridRetriever is a Retriever based both on dense and sparse embeddings, compatible with the QdrantDocumentStore.

It compares the query and document’s dense and sparse embeddings and fetches the documents most relevant to the query from the QdrantDocumentStore, fusing the scores with Reciprocal Rank Fusion.

👍

Hybrid Retrieval Pipeline

If you want additional customization for merging or fusing results, consider creating a hybrid retrieval pipeline with DocumentJoiner.

You can check out our hybrid retrieval pipeline tutorial for detailed steps.

When using the QdrantHybridRetriever, make sure it has the query and document with dense and sparse embeddings available. You can do so by:

  • Adding a (dense) document Embedder and a sparse document Embedder to your indexing pipeline,
  • Adding a (dense) text Embedder and a sparse text Embedder to your query pipeline.

In addition to query_embedding and query_sparse_embedding, the QdrantHybridRetriever accepts other optional parameters, including top_k (the maximum number of documents to retrieve) and filters to narrow down the search space.

📘

Sparse Embedding Support

To use Sparse Embedding support, you need to initialize the QdrantDocumentStore with use_sparse_embeddings=True, which is False by default.

If you want to use Document Store or collection previously created with this feature disabled, you must migrate the existing data. You can do this by taking advantage of the migrate_to_sparse_embeddings_support utility function.

Installation

To start using Qdrant with Haystack, first install the package with:

pip install qdrant-haystack

Usage

On its own

from haystack_integrations.components.retrievers.qdrant import QdrantHybridRetriever
from haystack_integrations.document_stores.qdrant import QdrantDocumentStore
from haystack.dataclasses import Document, SparseEmbedding

document_store = QdrantDocumentStore(
    ":memory:",
    use_sparse_embeddings=True,
    recreate_index=True,
    return_embedding=True,
    wait_result_from_api=True,
)

doc = Document(content="test",
               embedding=[0.5]*768,
               sparse_embedding=SparseEmbedding(indices=[0, 3, 5], values=[0.1, 0.5, 0.12]))

document_store.write_documents([doc])

retriever = QdrantHybridRetriever(document_store=document_store)
embedding = [0.1]*768
sparse_embedding = SparseEmbedding(indices=[0, 1, 2, 3], values=[0.1, 0.8, 0.05, 0.33])
retriever.run(query_embedding=embedding, query_sparse_embedding=sparse_embedding)

In a pipeline

Currently, you can compute sparse embeddings using Fastembed Sparse Embedders.
First, install the package with:

pip install fastembed-haystack

In the example below, we are using Fastembed Embedders to compute dense embeddings as well.

from haystack import Document, Pipeline
from haystack.components.writers import DocumentWriter
from haystack_integrations.components.retrievers.qdrant import QdrantHybridRetriever
from haystack_integrations.document_stores.qdrant import QdrantDocumentStore
from haystack.document_stores.types import DuplicatePolicy
from haystack_integrations.components.embedders.fastembed import (
	FastembedTextEmbedder,
	FastembedDocumentEmbedder,
	FastembedSparseTextEmbedder,
	FastembedSparseDocumentEmbedder
)	
	
document_store = QdrantDocumentStore(
    ":memory:",
    recreate_index=True,
    use_sparse_embeddings=True,
    embedding_dim = 384
)

documents = [
    Document(content="My name is Wolfgang and I live in Berlin"),
    Document(content="I saw a black horse running"),
    Document(content="Germany has many big cities"),
    Document(content="fastembed is supported by and maintained by Qdrant."),
]

indexing = Pipeline()
indexing.add_component("sparse_doc_embedder", FastembedSparseDocumentEmbedder(model="prithvida/Splade_PP_en_v1"))
indexing.add_component("dense_doc_embedder", FastembedDocumentEmbedder(model="BAAI/bge-small-en-v1.5"))
indexing.add_component("writer", DocumentWriter(document_store=document_store, policy=DuplicatePolicy.OVERWRITE))
indexing.connect("sparse_doc_embedder", "dense_doc_embedder")
indexing.connect("dense_doc_embedder", "writer")

indexing_pipeline.run({"sparse_document_embedder": {"documents": documents}})

querying = Pipeline()
querying.add_component("sparse_text_embedder", FastembedSparseTextEmbedder(model="prithvida/Splade_PP_en_v1"))
querying.add_component("dense_text_embedder", FastembedTextEmbedder(
	model="BAAI/bge-small-en-v1.5", prefix="Represent this sentence for searching relevant passages: ")
	)
querying.add_component("retriever", QdrantHybridRetriever(document_store=document_store))

querying.connect("sparse_text_embedder.sparse_embedding", "retriever.query_sparse_embedding")
querying.connect("dense_text_embedder.embedding", "retriever.query_embedding")

question = "Who supports fastembed?"

results = query_mix.run(
    {"dense_text_embedder": {"text": question},
     "sparse_text_embedder": {"text": question}}
)

print(result["retriever"]["documents"][0])

# Document(id=...,
#  content: 'fastembed is supported by and maintained by Qdrant.',
#  score: 1.0)