DocumentationAPI Reference📓 Tutorials🧑‍🍳 Cookbook🤝 Integrations💜 Discord🎨 Studio (Waitlist)
Documentation

Get Started

Have a look at this page to learn how to quickly get up and running with Haystack. It contains instructions for installing, running your first RAG pipeline, adding data and further resources.

Build your first RAG application

Let's build your first Retrieval Augmented Generation (RAG) pipeline and see how Haystack answers questions.

First, install the minimal form of Haystack:

pip install haystack-ai
Are you already using Haystack 1.x?

🚧

Warning

Installing farm-haystack and haystack-ai in the same Python environment (virtualenv, Colab, or system) causes problems.

Installing both packages in the same environment can somehow work or fail in obscure ways. We suggest installing only one of these packages per Python environment. Make sure that you remove both packages if they are installed in the same environment, followed by installing only one of them:

pip uninstall -y farm-haystack haystack-ai
pip install haystack-ai

If you have any questions, please reach out to us on the GitHub Discussion or Discord.

The following code will load your data to the Document Store, build a RAG pipeline, and ask a question based on the data.

In the example below, we show how to set an API key using a Haystack Secret. However, for easier use, you can also set an OpenAI key as an OPENAI_API_KEY environment variable.

import os
from haystack import Pipeline, Document
from haystack.utils import Secret
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.retrievers.in_memory import InMemoryBM25Retriever
from haystack.components.generators import OpenAIGenerator
from haystack.components.builders.answer_builder import AnswerBuilder
from haystack.components.builders.prompt_builder import PromptBuilder

# Write documents to InMemoryDocumentStore
document_store = InMemoryDocumentStore()
document_store.write_documents([
    Document(content="My name is Jean and I live in Paris."), 
    Document(content="My name is Mark and I live in Berlin."), 
    Document(content="My name is Giorgio and I live in Rome.")
])

# Build a RAG pipeline
prompt_template = """
Given these documents, answer the question.
Documents:
{% for doc in documents %}
    {{ doc.content }}
{% endfor %}
Question: {{question}}
Answer:
"""

retriever = InMemoryBM25Retriever(document_store=document_store)
prompt_builder = PromptBuilder(template=prompt_template)
llm = OpenAIGenerator(api_key=Secret.from_token(api_key))

rag_pipeline = Pipeline()
rag_pipeline.add_component("retriever", retriever)
rag_pipeline.add_component("prompt_builder", prompt_builder)
rag_pipeline.add_component("llm", llm)
rag_pipeline.connect("retriever", "prompt_builder.documents")
rag_pipeline.connect("prompt_builder", "llm")

# Ask a question
question = "Who lives in Paris?"
results = rag_pipeline.run(
    {
        "retriever": {"query": question},
        "prompt_builder": {"question": question},
    }
)

print(results["llm"]["replies"])

Are you curious about what each step does in this code example? Check out the recipe below for details:

Adding Your Data

Instead of running the RAG pipeline on example data, learn how you can add your own custom data using Document Stores.