WeaviateEmbeddingRetriever
This is an embedding Retriever compatible with the Weaviate Document Store.
Most common position in a pipeline | 1. After a Text Embedder and before a PromptBuilder in a RAG pipeline 2. The last component in the semantic search pipeline 3. After a Text Embedder and before an ExtractiveReader in an extractive QA pipeline |
Mandatory init variables | "document_store": An instance of a WeaviateDocumentStore |
Mandatory run variables | “query_embedding”: A list of floats |
Output variables | “documents”: A list of documents |
API reference | Weaviate |
GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/weaviate |
Overview
The WeaviateEmbeddingRetriever
is an embedding-based Retriever compatible with the WeaviateDocumentStore
. It compares the query and Document embeddings and fetches the Documents most relevant to the query from the WeaviateDocumentStore
based on the outcome.
Parameters
When using the WeaviateEmbeddingRetriever
in your NLP system, ensure the query and Document embeddings are available. You can do so by adding a Document Embedder to your indexing Pipeline and a Text Embedder to your query Pipeline.
In addition to the query_embedding
, the WeaviateEmbeddingRetriever
accepts other optional parameters, including top_k
(the maximum number of Documents to retrieve) and filters
to narrow down the search space.
You can also specify distance
, the maximum allowed distance between embeddings, and certainty
, the normalized distance between the result items and the search embedding. The behavior of distance
depends on the Collection’s distance metric used. See the official Weaviate documentation for more information.
The embedding similarity function depends on the vectorizer used in the WeaviateDocumentStore
collection. Check out the official Weaviate documentation to see all the supported vectorizers.
Usage
Installation
To start using Weaviate with Haystack, install the package with:
pip install weaviate-haystack
On its own
This Retriever needs an instance of WeaviateDocumentStore
and indexed Documents to run.
from haystack_integrations.document_stores.weaviate.document_store import WeaviateDocumentStore
from haystack_integrations.components.retrievers.weaviate import WeaviateEmbeddingRetriever
document_store = WeaviateDocumentStore(url="http://localhost:8080")
retriever = WeaviateEmbeddingRetriever(document_store=document_store)
# using a fake vector to keep the example simple
retriever.run(query_embedding=[0.1]*768)
In a Pipeline
from haystack.document_stores.types import DuplicatePolicy
from haystack import Document
from haystack import Pipeline
from haystack.components.embedders import (
SentenceTransformersTextEmbedder,
SentenceTransformersDocumentEmbedder,
)
from haystack_integrations.document_stores.weaviate.document_store import (
WeaviateDocumentStore,
)
from haystack_integrations.components.retrievers.weaviate import (
WeaviateEmbeddingRetriever,
)
document_store = WeaviateDocumentStore(url="http://localhost:8080")
documents = [
Document(content="There are over 7,000 languages spoken around the world today."),
Document(
content="Elephants have been observed to behave in a way that indicates a high level of self-awareness, such as recognizing themselves in mirrors."
),
Document(
content="In certain parts of the world, like the Maldives, Puerto Rico, and San Diego, you can witness the phenomenon of bioluminescent waves."
),
]
document_embedder = SentenceTransformersDocumentEmbedder()
document_embedder.warm_up()
documents_with_embeddings = document_embedder.run(documents)
document_store.write_documents(
documents_with_embeddings.get("documents"), policy=DuplicatePolicy.OVERWRITE
)
query_pipeline = Pipeline()
query_pipeline.add_component("text_embedder", SentenceTransformersTextEmbedder())
query_pipeline.add_component(
"retriever", WeaviateEmbeddingRetriever(document_store=document_store)
)
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
query = "How many languages are there?"
result = query_pipeline.run({"text_embedder": {"text": query}})
print(result["retriever"]["documents"][0])
Updated about 2 months ago