DocumentationAPI Reference📓 Tutorials🧑‍🍳 Cookbook🤝 Integrations💜 Discord🎨 Studio
Documentation

NvidiaRanker

Use this component to rank documents based on their similarity to the query using Nvidia-hosted models.

Most common position in a pipelineIn a query pipeline, after a component that returns a list of documents such as a Retriever
Mandatory init variables"api_key": API key for the NVIDIA NIM. Can be set with NVIDIA_API_KEY env var.
Mandatory run variables”query”: A query string

“documents”: A list of document objects
Output variables“documents”: A list of document objects
API referenceNvidia
GitHub linkhttps://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/nvidia

Overview

NvidiaRanker ranks Documents based on semantic relevance to a specified query. It uses ranking models provided by NVIDIA NIMs. The default model for this Ranker is nvidia/nv-rerankqa-mistral-4b-v3.

You can also specify the top_k parameter to set the maximum number of documents to return.

See the rest of the customizable parameters you can set for NvidiaRanker in our API reference.

To start using this integration with Haystack, install it with:

pip install nvidia-haystack

The component uses an NVIDIA_API_KEY environment variable by default. Otherwise, you can pass an Nvidia API key at initialization with api_key like this:

ranker = NvidiaRanker(api_key=Secret.from_token("<your-api-key>"))

Usage

On its own

This example uses NvidiaRanker to rank two simple documents. To run the Ranker, pass a query, provide the documents, and set the number of documents to return in the top_k parameter.

    from haystack_integrations.components.rankers.nvidia import NvidiaRanker
    from haystack import Document
    from haystack.utils import Secret
    
    ranker = NvidiaRanker(
        model="nvidia/nv-rerankqa-mistral-4b-v3",
        api_key=Secret.from_env_var("NVIDIA_API_KEY"),
    )
    ranker.warm_up()
    
    query = "What is the capital of Germany?"
    documents = [
        Document(content="Berlin is the capital of Germany."),
        Document(content="The capital of Germany is Berlin."),
        Document(content="Germany's capital is Berlin."),
    ]
    
    result = ranker.run(query, documents, top_k=2)
    print(result["documents"])

In a pipeline

Below is an example of a pipeline that retrieves documents from an InMemoryDocumentStore based on keyword search (using InMemoryBM25Retriever). It then uses the NvidiaRanker to rank the retrieved documents according to their similarity to the query. The pipeline uses the default settings of the Ranker.

from haystack import Document, Pipeline
from haystack.components.retrievers.in_memory import InMemoryBM25Retriever
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack_integrations.components.rankers.nvidia import NvidiaRanker

docs = [
    Document(content="Paris is in France"),
    Document(content="Berlin is in Germany"),
    Document(content="Lyon is in France"),
]
document_store = InMemoryDocumentStore()
document_store.write_documents(docs)

retriever = InMemoryBM25Retriever(document_store=document_store)
ranker = NvidiaRanker()

document_ranker_pipeline = Pipeline()
document_ranker_pipeline.add_component(instance=retriever, name="retriever")
document_ranker_pipeline.add_component(instance=ranker, name="ranker")

document_ranker_pipeline.connect("retriever.documents", "ranker.documents")

query = "Cities in France"
res = document_ranker_pipeline.run(data={"retriever": {"query": query, "top_k": 3}, "ranker": {"query": query, "top_k": 2}})

👍

top_k parameter

In the example above, the top_k values for the Retriever and the Ranker are different. The Retriever's top_k specifies how many documents it returns. The Ranker then orders these documents.

You can set the same or a smaller top_k value for the Ranker. The Ranker's top_k is the number of documents it returns (if it's the last component in the pipeline) or forwards to the next component. In the pipeline example above, the Ranker is the last component, so the output you get when you run the pipeline are the top two documents, as per the Ranker's top_k.

Adjusting the top_k values can help you optimize performance. In this case, a smaller top_k value of the Retriever means fewer documents to process for the Ranker, which can speed up the pipeline.


Related Links

Check out the API reference in the GitHub repo or in our docs: