DocumentationAPI ReferenceπŸ““ TutorialsπŸ§‘β€πŸ³ Cookbook🀝 IntegrationsπŸ’œ Discord🎨 Studio
Documentation

AzureOpenAIChatGenerator

This component enables chat completion using OpenAI’s large language models (LLMs) through Azure services.

Most common position in a pipelineAfter aΒ ChatPromptBuilder
Mandatory init variables"api_key": The Azure OpenAI API key. Can be set with AZURE_OPENAI_API_KEY env var.

"azure_ad_token": Microsoft Entra ID token. Can be set with AZURE_OPENAI_AD_TOKEN env var.
Mandatory run variablesβ€œmessages”: A list of ChatMessage objects representing the chat
Output variablesβ€œreplies”: A list of alternative replies of the LLM to the input chat
API referenceGenerators
GitHub linkhttps://github.com/deepset-ai/haystack/blob/main/haystack/components/generators/chat/azure.py

Overview

AzureOpenAIChatGenerator supports OpenAI models deployed through Azure services. To see the list of supported models, head over to Azure documentation. The default model used with the component is gpt-4o-mini.

To work with Azure components, you will need an Azure OpenAI API key, as well as an Azure OpenAI Endpoint. You can learn more about them in Azure documentation.

The component uses AZURE_OPENAI_API_KEY andΒ AZURE_OPENAI_AD_TOKENΒ environment variables by default. Otherwise, you can pass api_keyΒ andΒ azure_ad_token at initialization:

client = AzureOpenAIChatGenerator(azure_endpoint="<Your Azure endpoint e.g. `https://your-company.azure.openai.com/>",
                        api_key=Secret.from_token("<your-api-key>"),
                        azure_deployment="<a model name>")

πŸ“˜

We recommend using environment variables instead of initialization parameters.

Then, the component needs a list of ChatMessage objects to operate. ChatMessage is a data class that contains a message, a role (who generated the message, such as user, assistant, system, function), and optional metadata. See the usage section for an example.

You can pass any chat completion parameters that are valid for the openai.ChatCompletion.create method directly to AzureOpenAIChatGenerator using the generation_kwargs parameter, both at initialization and to run() method. For more details on the supported parameters, refer to the Azure documentation.

You can also specify a model for this component through the azure_deployment init parameter.

Streaming

AzureOpenAIChatGenerator supports streaming the tokens from the LLM directly in output. To do so, pass a function to the streaming_callback init parameter. Note that streaming the tokens is only compatible with generating a single response, so n must be set to 1 for streaming to work.

πŸ“˜

This component is designed for chat completion, so it expects a list of messages, not a single string. If you want to use OpenAI LLMs for text generation (such as translation or summarization tasks) or don’t want to use the ChatMessage object, use AzureOpenAIGenerator instead.

Usage

On its own

Basic usage:

from haystack.dataclasses import ChatMessage
from haystack.components.generators.chat import AzureOpenAIChatGenerator
client = AzureOpenAIChatGenerator()
response = client.run(
	  [ChatMessage.from_user("What's Natural Language Processing? Be brief.")]
)
print(response)

>> {'replies': [ChatMessage(content='Natural Language Processing (NLP) is a
>> subfield of artificial intelligence (AI) that focuses on the interaction
>> between computers and humans through natural language. It involves enabling
>> computers to understand, interpret, and generate human language, enabling
>> various applications such as translation, sentiment analysis, chatbots, and
>> voice assistants.', role=<ChatRole.ASSISTANT: 'assistant'>, name=None,
>> metadata={'model': 'gpt-4o-mini', 'index': 0, 'finish_reason':
>> 'stop', 'usage': {'prompt_tokens': 16, 'completion_tokens': 61,
>> 'total_tokens': 77}})]}

With streaming:

from haystack.dataclasses import ChatMessage
from haystack.components.generators.chat import AzureOpenAIChatGenerator
client = AzureOpenAIChatGenerator(streaming_callback=lambda chunk: print(chunk.content, end="", flush=True))
response = client.run(
	  [ChatMessage.from_user("What's Natural Language Processing? Be brief.")]
)
print(response)

>> Natural Language Processing (NLP) is a
>> subfield of artificial intelligence (AI) that focuses on the interaction
>> between computers and humans through natural language. It involves enabling
>> computers to understand, interpret, and generate human language, enabling
>> various applications such as translation, sentiment analysis, chatbots, and
>> voice assistants.
>> {'replies': [ChatMessage(content='Natural Language Processing (NLP) is a
>> subfield of artificial intelligence (AI) that focuses on the interaction
>> between computers and humans through natural language. It involves enabling
>> computers to understand, interpret, and generate human language, enabling
>> various applications such as translation, sentiment analysis, chatbots, and
>> voice assistants.', role=<ChatRole.ASSISTANT: 'assistant'>, name=None,
>> metadata={'model': 'gpt-4o-mini', 'index': 0, 'finish_reason':
>> 'stop', 'usage': {'prompt_tokens': 16, 'completion_tokens': 61,
>> 'total_tokens': 77}})]}

In a pipeline

from haystack.components.builders import ChatPromptBuilder
from haystack.components.generators.chat import AzureOpenAIChatGenerator
from haystack.dataclasses import ChatMessage
from haystack import Pipeline

# no parameter init, we don't use any runtime template variables
prompt_builder = ChatPromptBuilder()
llm = AzureOpenAIChatGenerator()

pipe = Pipeline()
pipe.add_component("prompt_builder", prompt_builder)
pipe.add_component("llm", llm)
pipe.connect("prompt_builder.prompt", "llm.messages")
location = "Berlin"
messages = [ChatMessage.from_system("Always respond in German even if some input data is in other languages."),
            ChatMessage.from_user("Tell me about {{location}}")]
pipe.run(data={"prompt_builder": {"template_variables":{"location": location}, "template": messages}})

>> {'llm': {'replies': [ChatMessage(content='Berlin ist die Hauptstadt Deutschlands und die grâßte Stadt des Landes.
>> Es ist eine lebhafte Metropole, die fΓΌr ihre Geschichte, Kultur und einzigartigen SehenswΓΌrdigkeiten bekannt ist.
>> Berlin bietet eine vielfΓ€ltige Kulturszene, beeindruckende architektonische Meisterwerke wie den Berliner Dom
>> und das Brandenburger Tor, sowie weltberΓΌhmte Museen wie das Pergamonmuseum. Die Stadt hat auch eine pulsierende
>> Clubszene und ist fΓΌr ihr aufregendes Nachtleben berΓΌhmt. Berlin ist ein Schmelztiegel verschiedener Kulturen und
>> zieht jedes Jahr Millionen von Touristen an.', role=<ChatRole.ASSISTANT: 'assistant'>, name=None,
>> metadata={'model': 'gpt-4o-mini', 'index': 0, 'finish_reason': 'stop', 'usage': {'prompt_tokens': 32,
>> 'completion_tokens': 153, 'total_tokens': 185}})]}}

Related Links

See the parameters details in our API reference: