CohereRanker
Use this component to rank documents based on their similarity to the query using Cohere rerank models.
Most common position in a pipeline | In a query pipeline, after a component that returns a list of documents such as a Retriever |
Mandatory init variables | "api_key": The Cohere API key. Can be set with COHERE_API_KEY or CO_API_KEY env var. |
Mandatory run variables | “documents”: A list of document objects ”query”: A query string ”top_k”: The maximum number of documents to return |
Output variables | “documents”: A list of document objects |
API reference | Cohere |
GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/cohere |
Overview
CohereRanker
ranks Documents
based on semantic relevance to a specified query. It uses Cohere rerank models for ranking. This list of all supported models can be found in Cohere’s documentation. The default model for this Ranker is rerank-english-v2.0
.
You can also specify the top_k
parameter to set the maximum number of documents to return.
To start using this integration with Haystack, install it with:
pip install cohere-haystack
The component uses a COHERE_API_KEY
or CO_API_KEY
environment variable by default. Otherwise, you can pass a Cohere API key at initialization with api_key
like this:
ranker = CohereRanker(api_key=Secret.from_token("<your-api-key>"))
Usage
On its own
This example uses CohereRanker
to rank two simple documents. To run the Ranker, pass a query
, provide the documents
, and set the number of documents to return in the top_k
parameter.
from haystack import Document
from haystack_integrations.components.rankers.cohere import CohereRanker
docs = [Document(content="Paris"), Document(content="Berlin")]
ranker = CohereRanker()
ranker.run(query="City in France", documents=docs, top_k=1)
In a pipeline
Below is an example of a pipeline that retrieves documents from an InMemoryDocumentStore
based on keyword search (using InMemoryBM25Retriever
). It then uses the CohereRanker
to rank the retrieved documents according to their similarity to the query. The pipeline uses the default settings of the Ranker.
from haystack import Document, Pipeline
from haystack.components.retrievers.in_memory import InMemoryBM25Retriever
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack_integrations.components.rankers.cohere import CohereRanker
docs = [
Document(content="Paris is in France"),
Document(content="Berlin is in Germany"),
Document(content="Lyon is in France"),
]
document_store = InMemoryDocumentStore()
document_store.write_documents(docs)
retriever = InMemoryBM25Retriever(document_store=document_store)
ranker = CohereRanker()
document_ranker_pipeline = Pipeline()
document_ranker_pipeline.add_component(instance=retriever, name="retriever")
document_ranker_pipeline.add_component(instance=ranker, name="ranker")
document_ranker_pipeline.connect("retriever.documents", "ranker.documents")
query = "Cities in France"
res = document_ranker_pipeline.run(data={"retriever": {"query": query, "top_k": 3}, "ranker": {"query": query, "top_k": 2}})
top_k
parameterIn the example above, the
top_k
values for the Retriever and the Ranker are different. The Retriever'stop_k
specifies how many documents it returns. The Ranker then orders these documents.You can set the same or a smaller
top_k
value for the Ranker. The Ranker'stop_k
is the number of documents it returns (if it's the last component in the pipeline) or forwards to the next component. In the pipeline example above, the Ranker is the last component, so the output you get when you run the pipeline are the top two documents, as per the Ranker'stop_k
.Adjusting the
top_k
values can help you optimize performance. In this case, a smallertop_k
value of the Retriever means fewer documents to process for the Ranker, which can speed up the pipeline.
Updated 5 months ago