AzureOCRDocumentConverter
AzureOCRDocumentConverter
converts files to documents using Azure's Document Intelligence service. It supports the following file formats: PDF (both searchable and image-only), JPEG, PNG, BMP, TIFF, DOCX, XLSX, PPTX, and HTML.
Most common position in a pipeline | Before PreProcessors , or right at the beginning of an indexing pipeline |
Mandatory init variables | "endpoint": The endpoint of your Azure resource "api_key": The API key of your Azure resource. Can be set with AZURE_AI_API_KEY environment variable. |
Mandatory run variables | "sources": A list of file paths |
Output variables | "documents": A list of documents "raw_azure_response": A list of raw responses from Azure |
API reference | Converters |
GitHub link | https://github.com/deepset-ai/haystack/blob/main/haystack/components/converters/azure.py |
Overview
AzureOCRDocumentConverter
takes a list of file paths or ByteStream
objects as input and uses Azure services to convert the files to a list of documents. Optionally, metadata can be attached to the documents through the meta
input parameter. You need an active Azure account and a Document Intelligence or Cognitive Services resource to use this integration. Follow the steps described in the Azure documentation to set up your resource.
The component uses an AZURE_AI_API_KEY
environment variable by default. Otherwise, you can pass an api_key
at initialization – see code examples below.
When you initialize the component, you can optionally set the model_id
, which refers to the model you want to use. Please refer to Azure documentation for a list of available models. The default model is "prebuilt-read"
.
The AzureOCRDocumentConverter
doesn’t extract the tables from a file as plain text but generates separate Document
objects of type table
that maintain the two-dimensional structure of the tables.
Usage
You need to install azure-ai-formrecognizer
package to use the AzureOCRDocumentConverter
:
pip install "azure-ai-formrecognizer>=3.2.0b2"
On its own
from pathlib import Path
from haystack.components.converters import AzureOCRDocumentConverter
from haystack.utils import Secret
converter = AzureOCRDocumentConverter(
endpoint="azure_resource_url",
api_key=Secret.from_token("<your-api-key>")
)
converter.run(sources=[Path("my_file.pdf")])
In a pipeline
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.converters import AzureOCRDocumentConverter
from haystack.components.preprocessors import DocumentCleaner
from haystack.components.preprocessors import DocumentSplitter
from haystack.components.writers import DocumentWriter
from haystack.utils import Secret
document_store = InMemoryDocumentStore()
pipeline = Pipeline()
pipeline.add_component("converter", AzureOCRDocumentConverter(endpoint="azure_resource_url", api_key=Secret.from_token("<your-api-key>")))
pipeline.add_component("cleaner", DocumentCleaner())
pipeline.add_component("splitter", DocumentSplitter(split_by="sentence", split_length=5))
pipeline.add_component("writer", DocumentWriter(document_store=document_store))
pipeline.connect("converter", "cleaner")
pipeline.connect("cleaner", "splitter")
pipeline.connect("splitter", "writer")
file_names = ["my_file.pdf"]
pipeline.run({"converter": {"sources": file_names}})
Updated 4 months ago