OpenAITextEmbedder
OpenAITextEmbedder transforms a string into a vector that captures its semantics using an OpenAI embedding model.
When you perform embedding retrieval, you use this component to transform your query into a vector. Then, the embedding Retriever looks for similar or relevant documents.
Name | OpenAITextEmbedder |
Folder path | /embedders/ |
Most common position in a pipeline | Before an embedding Retriever in a query/RAG pipeline |
Mandatory input variables | "text": A string |
Output variables | "embedding": A list of float numbers "meta": A dictionary of metadata |
Overview
To see the list of compatible OpenAI embedding models, head over to OpenAI documentation. The default model for OpenAITextEmbedder
is text-embedding-ada-002
.
Use OpenAITextEmbedder
to embed a simple string (such as a query) into a vector. For embedding lists of documents, use the OpenAIDocumentEmbedder, which enriches the document with the computed embedding, also known as vector.
The component uses an OPENAI_API_KEY
environment variable by default. Otherwise, you can pass an API key at initialization with api_key
:
embedder = OpenAITextEmbedder(api_key=Secret.from_token("<your-api-key>"))
Usage
On its own
Here is how you can use the component on its own:
from haystack.components.embedders import OpenAITextEmbedder
text_to_embed = "I love pizza!"
text_embedder = OpenAITextEmbedder(api_key=Secret.from_token("<your-api-key>"))
print(text_embedder.run(text_to_embed))
# {'embedding': [0.017020374536514282, -0.023255806416273117, ...],
# 'meta': {'model': 'text-embedding-ada-002-v2',
# 'usage': {'prompt_tokens': 4, 'total_tokens': 4}}}
We recommend setting OPENAI_API_KEY as an environment variable instead of setting it as a parameter.
In a pipeline
from haystack import Document
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.embedders import OpenAITextEmbedder, OpenAIDocumentEmbedder
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
documents = [Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities")]
document_embedder = OpenAIDocumentEmbedder()
documents_with_embeddings = document_embedder.run(documents)['documents']
document_store.write_documents(documents_with_embeddings)
query_pipeline = Pipeline()
query_pipeline.add_component("text_embedder", OpenAITextEmbedder())
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
query = "Who lives in Berlin?"
result = query_pipeline.run({"text_embedder":{"text": query}})
print(result['retriever']['documents'][0])
# Document(id=..., mimetype: 'text/plain',
# text: 'My name is Wolfgang and I live in Berlin')
Updated 7 months ago