QdrantSparseEmbeddingRetriever
A Retriever based on sparse embeddings, compatible with the Qdrant Document Store.
Name | QdrantSparseEmbeddingRetriever |
Source | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/qdrant |
Most common position in a pipeline | 1. After a Text Embedder and before a |
Mandatory input variables | “query_sparse_embedding”: A |
Output variables | “document”: A list of documents |
Overview
The QdrantSparseEmbeddingRetriever is a Retriever based on sparse embeddings, compatible with the QdrantDocumentStore.
It compares the query and document sparse embeddings and, based on the outcome, fetches the documents most relevant to the query from the QdrantDocumentStore.
When using the QdrantSparseEmbeddingRetriever, make sure it has the query and document sparse embeddings available. You can do so by adding a sparse document Embedder to your indexing pipeline and a sparse text Embedder to your query pipeline.
In addition to the query_sparse_embedding, the QdrantSparseEmbeddingRetriever accepts other optional parameters, including top_k (the maximum number of documents to retrieve) and filters to narrow down the search space.
Sparse Embedding SupportTo use Sparse Embedding support, you need to initialize the
QdrantDocumentStorewithuse_sparse_embeddings=True, which isFalseby default.If you want to use Document Store or collection previously created with this feature disabled, you must migrate the existing data. You can do this by taking advantage of the
migrate_to_sparse_embeddings_supportutility function.
Installation
To start using Qdrant with Haystack, first install the package with:
pip install qdrant-haystackUsage
On its own
This Retriever needs the QdrantDocumentStore and indexed documents to run.
from haystack_integrations.components.retrievers.qdrant import QdrantSparseEmbeddingRetriever
from haystack_integrations.document_stores.qdrant import QdrantDocumentStore
from haystack.dataclasses import Document, SparseEmbedding
document_store = QdrantDocumentStore(
":memory:",
use_sparse_embeddings=True,
recreate_index=True,
return_embedding=True,
)
doc = Document(content="test", sparse_embedding=SparseEmbedding(indices=[0, 3, 5], values=[0.1, 0.5, 0.12]))
document_store.write_documents([doc])
retriever = QdrantSparseEmbeddingRetriever(document_store=document_store)
sparse_embedding = SparseEmbedding(indices=[0, 1, 2, 3], values=[0.1, 0.8, 0.05, 0.33])
retriever.run(query_sparse_embedding=sparse_embedding)In a pipeline
In Haystack, you can compute sparse embeddings using Fastembed Embedders.
First, install the package with:
pip install fastembed-haystackThen, try out this pipeline:
from haystack import Document, Pipeline
from haystack.components.writers import DocumentWriter
from haystack_integrations.components.retrievers.qdrant import QdrantSparseEmbeddingRetriever
from haystack_integrations.document_stores.qdrant import QdrantDocumentStore
from haystack.document_stores.types import DuplicatePolicy
from haystack_integrations.components.embedders.fastembed import FastembedDocumentEmbedder, FastembedTextEmbedder
document_store = QdrantDocumentStore(
":memory:",
recreate_index=True,
use_sparse_embeddings=True
)
documents = [
Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities"),
Document(content="fastembed is supported by and maintained by Qdrant."),
]
sparse_document_embedder = FastembedSparseDocumentEmbedder()
writer = DocumentWriter(document_store=document_store, policy=DuplicatePolicy.OVERWRITE)
indexing_pipeline = Pipeline()
indexing_pipeline.add_component("sparse_document_embedder", sparse_document_embedder)
indexing_pipeline.add_component("writer", writer)
indexing_pipeline.connect("sparse_document_embedder", "writer")
indexing_pipeline.run({"sparse_document_embedder": {"documents": documents}})
query_pipeline = Pipeline()
query_pipeline.add_component("sparse_text_embedder", FastembedSparseTextEmbedder())
query_pipeline.add_component("sparse_retriever", QdrantSparseEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("sparse_text_embedder.sparse_embedding", "sparse_retriever.query_sparse_embedding")
query = "Who supports fastembed?"
result = query_pipeline.run({"sparse_text_embedder": {"text": query}})
print(result["sparse_retriever"]["documents"][0]) # noqa: T201
# Document(id=...,
# content: 'fastembed is supported by and maintained by Qdrant.',
# score: 0.758..)Updated 2 days ago
Check out the API reference in the GitHub repo or in our docs:
