Transforms queries into vectors to look for similar or relevant Documents.
Module azure_document_embedder
AzureOpenAIDocumentEmbedder
A component for computing Document embeddings using OpenAI models on Azure.
Usage example:
from haystack import Document
from haystack.components.embedders import AzureOpenAIDocumentEmbedder
doc = Document(content="I love pizza!")
document_embedder = AzureOpenAIDocumentEmbedder()
result = document_embedder.run([doc])
print(result['documents'][0].embedding)
# [0.017020374536514282, -0.023255806416273117, ...]AzureOpenAIDocumentEmbedder.__init__
def __init__(azure_endpoint: Optional[str] = None,
api_version: Optional[str] = "2023-05-15",
azure_deployment: str = "text-embedding-ada-002",
dimensions: Optional[int] = None,
api_key: Optional[Secret] = Secret.from_env_var(
"AZURE_OPENAI_API_KEY", strict=False),
azure_ad_token: Optional[Secret] = Secret.from_env_var(
"AZURE_OPENAI_AD_TOKEN", strict=False),
organization: Optional[str] = None,
prefix: str = "",
suffix: str = "",
batch_size: int = 32,
progress_bar: bool = True,
meta_fields_to_embed: Optional[List[str]] = None,
embedding_separator: str = "\n",
timeout: Optional[float] = None,
max_retries: Optional[int] = None)Create an AzureOpenAIDocumentEmbedder component.
Arguments:
azure_endpoint: The endpoint of the deployed model.api_version: The version of the API to use.azure_deployment: The deployment of the model, usually matches the model name.dimensions: The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3
and later models.api_key: The API key used for authentication.azure_ad_token: Microsoft Entra ID token, see Microsoft's official
Entra ID
documentation for more information.
Used to be called Azure Active Directory.organization: The Organization ID. See OpenAI's
production best practices
for more information.prefix: A string to add at the beginning of each text.suffix: A string to add at the end of each text.batch_size: Number of Documents to encode at once.progress_bar: If True shows a progress bar when running.meta_fields_to_embed: List of meta fields that will be embedded along with the Document text.embedding_separator: Separator used to concatenate the meta fields to the Document text.timeout: The timeout in seconds to be passed to the underlyingAzureOpenAIclient, if not set it is
inferred from theOPENAI_TIMEOUTenvironment variable or set to 30.max_retries: Maximum retries to establish a connection with AzureOpenAI if it returns an internal error,
if not set it is inferred from theOPENAI_MAX_RETRIESenvironment variable or set to 5.
AzureOpenAIDocumentEmbedder.to_dict
def to_dict() -> Dict[str, Any]Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
AzureOpenAIDocumentEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "AzureOpenAIDocumentEmbedder"Deserializes the component from a dictionary.
Arguments:
data: Dictionary to deserialize from.
Returns:
Deserialized component.
AzureOpenAIDocumentEmbedder.run
@component.output_types(documents=List[Document], meta=Dict[str, Any])
def run(documents: List[Document]) -> Dict[str, Any]Embed a list of Documents.
Arguments:
documents: Documents to embed.
Returns:
A dictionary with the following keys:
documents: Documents with embeddingsmeta: Information about the usage of the model.
Module azure_text_embedder
AzureOpenAITextEmbedder
A component for embedding strings using OpenAI models on Azure.
Usage example:
from haystack.components.embedders import AzureOpenAITextEmbedder
text_to_embed = "I love pizza!"
text_embedder = AzureOpenAITextEmbedder()
print(text_embedder.run(text_to_embed))
# {'embedding': [0.017020374536514282, -0.023255806416273117, ...],
# 'meta': {'model': 'text-embedding-ada-002-v2',
# 'usage': {'prompt_tokens': 4, 'total_tokens': 4}}}AzureOpenAITextEmbedder.__init__
def __init__(azure_endpoint: Optional[str] = None,
api_version: Optional[str] = "2023-05-15",
azure_deployment: str = "text-embedding-ada-002",
dimensions: Optional[int] = None,
api_key: Optional[Secret] = Secret.from_env_var(
"AZURE_OPENAI_API_KEY", strict=False),
azure_ad_token: Optional[Secret] = Secret.from_env_var(
"AZURE_OPENAI_AD_TOKEN", strict=False),
organization: Optional[str] = None,
timeout: Optional[float] = None,
max_retries: Optional[int] = None,
prefix: str = "",
suffix: str = "")Create an AzureOpenAITextEmbedder component.
Arguments:
azure_endpoint: The endpoint of the deployed model.api_version: The version of the API to use.azure_deployment: The deployment of the model, usually matches the model name.dimensions: The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3
and later models.api_key: The API key used for authentication.azure_ad_token: Microsoft Entra ID token, see Microsoft's official
Entra ID
documentation for more information.
Used to be called Azure Active Directory.organization: The Organization ID. See OpenAI's
production best practices
for more information.timeout: The timeout in seconds to be passed to the underlyingAzureOpenAIclient, if not set it is
inferred from theOPENAI_TIMEOUTenvironment variable or set to 30.max_retries: Maximum retries to establish a connection with AzureOpenAI if it returns an internal error,
if not set it is inferred from theOPENAI_MAX_RETRIESenvironment variable or set to 5.prefix: A string to add at the beginning of each text.suffix: A string to add at the end of each text.
AzureOpenAITextEmbedder.to_dict
def to_dict() -> Dict[str, Any]Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
AzureOpenAITextEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "AzureOpenAITextEmbedder"Deserializes the component from a dictionary.
Arguments:
data: Dictionary to deserialize from.
Returns:
Deserialized component.
AzureOpenAITextEmbedder.run
@component.output_types(embedding=List[float], meta=Dict[str, Any])
def run(text: str)Embed a single string.
Arguments:
text: Text to embed.
Returns:
A dictionary with the following keys:
embedding: The embedding of the input text.meta: Information about the usage of the model.
Module hugging_face_api_document_embedder
HuggingFaceAPIDocumentEmbedder
A component that embeds documents using Hugging Face APIs.
This component can be used to compute Document embeddings using different Hugging Face APIs:
- [Free Serverless Inference API]((https://huggingface.co/inference-api)
- Paid Inference Endpoints
- Self-hosted Text Embeddings Inference
Example usage with the free Serverless Inference API:
from haystack.components.embedders import HuggingFaceAPIDocumentEmbedder
from haystack.utils import Secret
from haystack.dataclasses import Document
doc = Document(content="I love pizza!")
doc_embedder = HuggingFaceAPIDocumentEmbedder(api_type="serverless_inference_api",
api_params={"model": "BAAI/bge-small-en-v1.5"},
token=Secret.from_token("<your-api-key>"))
result = document_embedder.run([doc])
print(result["documents"][0].embedding)
# [0.017020374536514282, -0.023255806416273117, ...]Example usage with paid Inference Endpoints:
from haystack.components.embedders import HuggingFaceAPIDocumentEmbedder
from haystack.utils import Secret
from haystack.dataclasses import Document
doc = Document(content="I love pizza!")
doc_embedder = HuggingFaceAPIDocumentEmbedder(api_type="inference_endpoints",
api_params={"url": "<your-inference-endpoint-url>"},
token=Secret.from_token("<your-api-key>"))
result = document_embedder.run([doc])
print(result["documents"][0].embedding)
# [0.017020374536514282, -0.023255806416273117, ...]Example usage with self-hosted Text Embeddings Inference:
from haystack.components.embedders import HuggingFaceAPIDocumentEmbedder
from haystack.dataclasses import Document
doc = Document(content="I love pizza!")
doc_embedder = HuggingFaceAPIDocumentEmbedder(api_type="text_embeddings_inference",
api_params={"url": "http://localhost:8080"})
result = document_embedder.run([doc])
print(result["documents"][0].embedding)
# [0.017020374536514282, -0.023255806416273117, ...]HuggingFaceAPIDocumentEmbedder.__init__
def __init__(api_type: Union[HFEmbeddingAPIType, str],
api_params: Dict[str, str],
token: Optional[Secret] = Secret.from_env_var(
["HF_API_TOKEN", "HF_TOKEN"], strict=False),
prefix: str = "",
suffix: str = "",
truncate: bool = True,
normalize: bool = False,
batch_size: int = 32,
progress_bar: bool = True,
meta_fields_to_embed: Optional[List[str]] = None,
embedding_separator: str = "\n")Create an HuggingFaceAPITextEmbedder component.
Arguments:
api_type: The type of Hugging Face API to use.api_params: A dictionary containing the following keys:model: model ID on the Hugging Face Hub. Required whenapi_typeisSERVERLESS_INFERENCE_API.url: URL of the inference endpoint. Required whenapi_typeisINFERENCE_ENDPOINTSor
TEXT_EMBEDDINGS_INFERENCE.token: The HuggingFace token to use as HTTP bearer authorization.
You can find your HF token in your account settings.prefix: A string to add at the beginning of each text.suffix: A string to add at the end of each text.truncate: Truncate input text from the end to the maximum length supported by the model.
This parameter takes effect when theapi_typeisTEXT_EMBEDDINGS_INFERENCE.
It also takes effect when theapi_typeisINFERENCE_ENDPOINTSand the backend is based on Text
Embeddings Inference. This parameter is ignored when theapi_typeisSERVERLESS_INFERENCE_API
(it is always set toTrueand cannot be changed).normalize: Normalize the embeddings to unit length.
This parameter takes effect when theapi_typeisTEXT_EMBEDDINGS_INFERENCE.
It also takes effect when theapi_typeisINFERENCE_ENDPOINTSand the backend is based on Text
Embeddings Inference. This parameter is ignored when theapi_typeisSERVERLESS_INFERENCE_API
(it is always set toFalseand cannot be changed).batch_size: Number of Documents to process at once.progress_bar: IfTrueshows a progress bar when running.meta_fields_to_embed: List of meta fields that will be embedded along with the Document text.embedding_separator: Separator used to concatenate the meta fields to the Document text.
HuggingFaceAPIDocumentEmbedder.to_dict
def to_dict() -> Dict[str, Any]Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
HuggingFaceAPIDocumentEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "HuggingFaceAPIDocumentEmbedder"Deserializes the component from a dictionary.
Arguments:
data: Dictionary to deserialize from.
Returns:
Deserialized component.
HuggingFaceAPIDocumentEmbedder.run
@component.output_types(documents=List[Document])
def run(documents: List[Document])Embed a list of Documents.
Arguments:
documents: Documents to embed.
Returns:
A dictionary with the following keys:
documents: Documents with embeddings
Module hugging_face_api_text_embedder
HuggingFaceAPITextEmbedder
A component that embeds text using Hugging Face APIs.
This component can be used to embed strings using different Hugging Face APIs:
- [Free Serverless Inference API]((https://huggingface.co/inference-api)
- Paid Inference Endpoints
- Self-hosted Text Embeddings Inference
Example usage with the free Serverless Inference API:
from haystack.components.embedders import HuggingFaceAPITextEmbedder
from haystack.utils import Secret
text_embedder = HuggingFaceAPITextEmbedder(api_type="serverless_inference_api",
api_params={"model": "BAAI/bge-small-en-v1.5"},
token=Secret.from_token("<your-api-key>"))
print(text_embedder.run("I love pizza!"))
# {'embedding': [0.017020374536514282, -0.023255806416273117, ...],Example usage with paid Inference Endpoints:
from haystack.components.embedders import HuggingFaceAPITextEmbedder
from haystack.utils import Secret
text_embedder = HuggingFaceAPITextEmbedder(api_type="inference_endpoints",
api_params={"model": "BAAI/bge-small-en-v1.5"},
token=Secret.from_token("<your-api-key>"))
print(text_embedder.run("I love pizza!"))
# {'embedding': [0.017020374536514282, -0.023255806416273117, ...],Example usage with self-hosted Text Embeddings Inference:
from haystack.components.embedders import HuggingFaceAPITextEmbedder
from haystack.utils import Secret
text_embedder = HuggingFaceAPITextEmbedder(api_type="text_embeddings_inference",
api_params={"url": "http://localhost:8080"})
print(text_embedder.run("I love pizza!"))
# {'embedding': [0.017020374536514282, -0.023255806416273117, ...],HuggingFaceAPITextEmbedder.__init__
def __init__(api_type: Union[HFEmbeddingAPIType, str],
api_params: Dict[str, str],
token: Optional[Secret] = Secret.from_env_var(
["HF_API_TOKEN", "HF_TOKEN"], strict=False),
prefix: str = "",
suffix: str = "",
truncate: bool = True,
normalize: bool = False)Create an HuggingFaceAPITextEmbedder component.
Arguments:
api_type: The type of Hugging Face API to use.api_params: A dictionary containing the following keys:model: model ID on the Hugging Face Hub. Required whenapi_typeisSERVERLESS_INFERENCE_API.url: URL of the inference endpoint. Required whenapi_typeisINFERENCE_ENDPOINTSor
TEXT_EMBEDDINGS_INFERENCE.token: The HuggingFace token to use as HTTP bearer authorization
You can find your HF token in your account settingsprefix: A string to add at the beginning of each text.suffix: A string to add at the end of each text.truncate: Truncate input text from the end to the maximum length supported by the model.
This parameter takes effect when theapi_typeisTEXT_EMBEDDINGS_INFERENCE.
It also takes effect when theapi_typeisINFERENCE_ENDPOINTSand the backend is based on Text
Embeddings Inference. This parameter is ignored when theapi_typeisSERVERLESS_INFERENCE_API
(it is always set toTrueand cannot be changed).normalize: Normalize the embeddings to unit length.
This parameter takes effect when theapi_typeisTEXT_EMBEDDINGS_INFERENCE.
It also takes effect when theapi_typeisINFERENCE_ENDPOINTSand the backend is based on Text
Embeddings Inference. This parameter is ignored when theapi_typeisSERVERLESS_INFERENCE_API
(it is always set toFalseand cannot be changed).
HuggingFaceAPITextEmbedder.to_dict
def to_dict() -> Dict[str, Any]Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
HuggingFaceAPITextEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "HuggingFaceAPITextEmbedder"Deserializes the component from a dictionary.
Arguments:
data: Dictionary to deserialize from.
Returns:
Deserialized component.
HuggingFaceAPITextEmbedder.run
@component.output_types(embedding=List[float])
def run(text: str)Embed a single string.
Arguments:
text: Text to embed.
Returns:
A dictionary with the following keys:
embedding: The embedding of the input text.
Module openai_document_embedder
OpenAIDocumentEmbedder
A component for computing Document embeddings using OpenAI models.
Usage example:
from haystack import Document
from haystack.components.embedders import OpenAIDocumentEmbedder
doc = Document(content="I love pizza!")
document_embedder = OpenAIDocumentEmbedder()
result = document_embedder.run([doc])
print(result['documents'][0].embedding)
# [0.017020374536514282, -0.023255806416273117, ...]OpenAIDocumentEmbedder.__init__
def __init__(api_key: Secret = Secret.from_env_var("OPENAI_API_KEY"),
model: str = "text-embedding-ada-002",
dimensions: Optional[int] = None,
api_base_url: Optional[str] = None,
organization: Optional[str] = None,
prefix: str = "",
suffix: str = "",
batch_size: int = 32,
progress_bar: bool = True,
meta_fields_to_embed: Optional[List[str]] = None,
embedding_separator: str = "\n",
timeout: Optional[float] = None,
max_retries: Optional[int] = None)Create a OpenAIDocumentEmbedder component.
By setting the 'OPENAI_TIMEOUT' and 'OPENAI_MAX_RETRIES' you can change the timeout and max_retries parameters
in the OpenAI client.
Arguments:
api_key: The OpenAI API key.model: The name of the model to use.dimensions: The number of dimensions the resulting output embeddings should have. Only supported intext-embedding-3
and later models.api_base_url: Overrides default base url for all HTTP requests.organization: The Organization ID. See OpenAI's
production best practices
for more information.prefix: A string to add at the beginning of each text.suffix: A string to add at the end of each text.batch_size: Number of Documents to encode at once.progress_bar: If True shows a progress bar when running.meta_fields_to_embed: List of meta fields that will be embedded along with the Document text.embedding_separator: Separator used to concatenate the meta fields to the Document text.timeout: Timeout for OpenAI Client calls, if not set it is inferred from theOPENAI_TIMEOUTenvironment variable
or set to 30.max_retries: Maximum retries to stablish contact with OpenAI if it returns an internal error, if not set it is inferred
from theOPENAI_MAX_RETRIESenvironment variable or set to 5.
OpenAIDocumentEmbedder.to_dict
def to_dict() -> Dict[str, Any]Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
OpenAIDocumentEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "OpenAIDocumentEmbedder"Deserializes the component from a dictionary.
Arguments:
data: Dictionary to deserialize from.
Returns:
Deserialized component.
OpenAIDocumentEmbedder.run
@component.output_types(documents=List[Document], meta=Dict[str, Any])
def run(documents: List[Document])Embed a list of Documents.
Arguments:
documents: Documents to embed.
Returns:
A dictionary with the following keys:
documents: Documents with embeddingsmeta: Information about the usage of the model.
Module openai_text_embedder
OpenAITextEmbedder
A component for embedding strings using OpenAI models.
Usage example:
from haystack.components.embedders import OpenAITextEmbedder
text_to_embed = "I love pizza!"
text_embedder = OpenAITextEmbedder()
print(text_embedder.run(text_to_embed))
# {'embedding': [0.017020374536514282, -0.023255806416273117, ...],
# 'meta': {'model': 'text-embedding-ada-002-v2',
# 'usage': {'prompt_tokens': 4, 'total_tokens': 4}}}OpenAITextEmbedder.__init__
def __init__(api_key: Secret = Secret.from_env_var("OPENAI_API_KEY"),
model: str = "text-embedding-ada-002",
dimensions: Optional[int] = None,
api_base_url: Optional[str] = None,
organization: Optional[str] = None,
prefix: str = "",
suffix: str = "",
timeout: Optional[float] = None,
max_retries: Optional[int] = None)Create an OpenAITextEmbedder component.
By setting the 'OPENAI_TIMEOUT' and 'OPENAI_MAX_RETRIES' you can change the timeout and max_retries parameters
in the OpenAI client.
Arguments:
api_key: The OpenAI API key.model: The name of the model to use.dimensions: The number of dimensions the resulting output embeddings should have. Only supported intext-embedding-3a
nd later models.api_base_url: Overrides default base url for all HTTP requests.organization: The Organization ID. See OpenAI's
production best practices
for more information.prefix: A string to add at the beginning of each text.suffix: A string to add at the end of each text.timeout: Timeout for OpenAI Client calls, if not set it is inferred from theOPENAI_TIMEOUTenvironment variable
or set to 30.max_retries: Maximum retries to stablish contact with OpenAI if it returns an internal error, if not set it is inferred
from theOPENAI_MAX_RETRIESenvironment variable or set to 5.
OpenAITextEmbedder.to_dict
def to_dict() -> Dict[str, Any]Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
OpenAITextEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "OpenAITextEmbedder"Deserializes the component from a dictionary.
Arguments:
data: Dictionary to deserialize from.
Returns:
Deserialized component.
OpenAITextEmbedder.run
@component.output_types(embedding=List[float], meta=Dict[str, Any])
def run(text: str)Embed a single string.
Arguments:
text: Text to embed.
Returns:
A dictionary with the following keys:
embedding: The embedding of the input text.meta: Information about the usage of the model.
Module sentence_transformers_document_embedder
SentenceTransformersDocumentEmbedder
A component for computing Document embeddings using Sentence Transformers models.
Usage example:
from haystack import Document
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
doc = Document(content="I love pizza!")
doc_embedder = SentenceTransformersDocumentEmbedder()
doc_embedder.warm_up()
result = doc_embedder.run([doc])
print(result['documents'][0].embedding)
# [-0.07804739475250244, 0.1498992145061493, ...]SentenceTransformersDocumentEmbedder.__init__
def __init__(model: str = "sentence-transformers/all-mpnet-base-v2",
device: Optional[ComponentDevice] = None,
token: Optional[Secret] = Secret.from_env_var(
["HF_API_TOKEN", "HF_TOKEN"], strict=False),
prefix: str = "",
suffix: str = "",
batch_size: int = 32,
progress_bar: bool = True,
normalize_embeddings: bool = False,
meta_fields_to_embed: Optional[List[str]] = None,
embedding_separator: str = "\n",
trust_remote_code: bool = False)Create a SentenceTransformersDocumentEmbedder component.
Arguments:
model: Local path or ID of the model on HuggingFace Hub.device: Overrides the default device used to load the model.token: The API token used to download private models from Hugging Face.prefix: A string to add at the beginning of each text.
Can be used to prepend the text with an instruction, as required by some embedding models,
such as E5 and bge.suffix: A string to add at the end of each text.batch_size: Number of Documents to encode at once.progress_bar: If True shows a progress bar when running.normalize_embeddings: If True returned vectors will have length 1.meta_fields_to_embed: List of meta fields that will be embedded along with the Document text.embedding_separator: Separator used to concatenate the meta fields to the Document text.trust_remote_code: IfFalse, only Hugging Face verified model architectures are allowed.
IfTrue, custom models and scripts are allowed.
SentenceTransformersDocumentEmbedder.to_dict
def to_dict() -> Dict[str, Any]Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
SentenceTransformersDocumentEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str,
Any]) -> "SentenceTransformersDocumentEmbedder"Deserializes the component from a dictionary.
Arguments:
data: Dictionary to deserialize from.
Returns:
Deserialized component.
SentenceTransformersDocumentEmbedder.warm_up
def warm_up()Initializes the component.
SentenceTransformersDocumentEmbedder.run
@component.output_types(documents=List[Document])
def run(documents: List[Document])Embed a list of Documents.
Arguments:
documents: Documents to embed.
Returns:
A dictionary with the following keys:
documents: Documents with embeddings
Module sentence_transformers_text_embedder
SentenceTransformersTextEmbedder
A component for embedding strings using Sentence Transformers models.
Usage example:
from haystack.components.embedders import SentenceTransformersTextEmbedder
text_to_embed = "I love pizza!"
text_embedder = SentenceTransformersTextEmbedder()
text_embedder.warm_up()
print(text_embedder.run(text_to_embed))
# {'embedding': [-0.07804739475250244, 0.1498992145061493,, ...]}SentenceTransformersTextEmbedder.__init__
def __init__(model: str = "sentence-transformers/all-mpnet-base-v2",
device: Optional[ComponentDevice] = None,
token: Optional[Secret] = Secret.from_env_var(
["HF_API_TOKEN", "HF_TOKEN"], strict=False),
prefix: str = "",
suffix: str = "",
batch_size: int = 32,
progress_bar: bool = True,
normalize_embeddings: bool = False,
trust_remote_code: bool = False)Create a SentenceTransformersTextEmbedder component.
Arguments:
model: Local path or ID of the model on HuggingFace Hub.device: Overrides the default device used to load the model.token: The API token used to download private models from Hugging Face.prefix: A string to add at the beginning of each text.
Can be used to prepend the text with an instruction, as required by some embedding models,
such as E5 and bge.suffix: A string to add at the end of each text.batch_size: Number of Documents to encode at once.progress_bar: If True shows a progress bar when running.normalize_embeddings: If True returned vectors will have length 1.trust_remote_code: IfFalse, only Hugging Face verified model architectures are allowed.
IfTrue, custom models and scripts are allowed.
SentenceTransformersTextEmbedder.to_dict
def to_dict() -> Dict[str, Any]Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
SentenceTransformersTextEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "SentenceTransformersTextEmbedder"Deserializes the component from a dictionary.
Arguments:
data: Dictionary to deserialize from.
Returns:
Deserialized component.
SentenceTransformersTextEmbedder.warm_up
def warm_up()Initializes the component.
SentenceTransformersTextEmbedder.run
@component.output_types(embedding=List[float])
def run(text: str)Embed a single string.
Arguments:
text: Text to embed.
Returns:
A dictionary with the following keys:
embedding: The embedding of the input text.
