DocumentationAPI Reference📓 Tutorials🧑‍🍳 Cookbook🤝 Integrations💜 Discord🎨 Studio
Documentation

HuggingFaceAPIDocumentEmbedder

Use this component to compute document embeddings using various Hugging Face APIs.

NameHuggingFaceAPIDocumentEmbedder
Folder path/embedders/
Most common position in a pipelineBefore a DocumentWriter in an indexing pipeline
Mandatory input variables“documents”: A list of documents to be embedded
Output variables“documents”: A list of documents to be embedded (enriched with embeddings)

Overview

HuggingFaceAPIDocumentEmbedder can be used to compute document embeddings using different Hugging Face APIs:

📘

This component should be used to embed a list of documents. To embed a string, use HuggingFaceAPITextEmbedder.

The component uses a HF_API_TOKEN environment variable by default. Otherwise, you can pass a Hugging Face API token at initialization with token – see code examples below.
The token is needed:

  • If you use the Serverless Inference API, or
  • If you use the Inference Endpoints.

Usage

Similarly to other Document Embedders, this component allows adding prefixes (and postfixes) to include instruction and embedding metadata.
For more fine-grained details, refer to the component’s API reference.

On its own

Using Free Serverless Inference API

Formerly known as (free) Hugging Face Inference API, this API allows you to quickly experiment with many models hosted on the Hugging Face Hub, offloading the inference to Hugging Face servers. It’s rate-limited and not meant for production.

To use this API, you need a free Hugging Face token.
The Embedder expects the model in api_params.

from haystack.components.embedders import HuggingFaceAPIDocumentEmbedder
from haystack.utils import Secret
from haystack.dataclasses import Document

doc = Document(content="I love pizza!")

doc_embedder = HuggingFaceAPIDocumentEmbedder(api_type="serverless_inference_api",
                                              api_params={"model": "BAAI/bge-small-en-v1.5"},
                                              token=Secret.from_token("<your-api-key>"))

result = document_embedder.run([doc])
print(result["documents"][0].embedding)

# [0.017020374536514282, -0.023255806416273117, ...]

Using Paid Inference Endpoints

In this case, a private instance of the model is deployed by Hugging Face, and you typically pay per hour.

To understand how to spin up an Inference Endpoint, visit Hugging Face documentation.

Additionally, in this case, you need to provide your Hugging Face token.
The Embedder expects the url of your endpoint in api_params.

from haystack.components.embedders import HuggingFaceAPIDocumentEmbedder
from haystack.utils import Secret
from haystack.dataclasses import Document

doc = Document(content="I love pizza!")

doc_embedder = HuggingFaceAPIDocumentEmbedder(api_type="inference_endpoints",
                                              api_params={"url": "<your-inference-endpoint-url>"},
                                              token=Secret.from_token("<your-api-key>"))

result = document_embedder.run([doc])
print(result["documents"][0].embedding)

# [0.017020374536514282, -0.023255806416273117, ...]

Using Self-Hosted Text Embeddings Inference (TEI)

Hugging Face Text Embeddings Inference is a toolkit for efficiently deploying and serving text embedding models.

While it powers the most recent versions of Serverless Inference API and Inference Endpoints, it can be used easily on-premise through Docker.

For example, you can run a TEI container as follows:

model=BAAI/bge-large-en-v1.5
revision=refs/pr/5
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.2 --model-id $model --revision $revision

For more information, refer to the official TEI repository.

The Embedder expects the url of your TEI instance in api_params.

from haystack.components.embedders import HuggingFaceAPIDocumentEmbedder
from haystack.dataclasses import Document

doc = Document(content="I love pizza!")

doc_embedder = HuggingFaceAPIDocumentEmbedder(api_type="text_embeddings_inference",
                                              api_params={"url": "http://localhost:8080"})

result = document_embedder.run([doc])
print(result["documents"][0].embedding)

# [0.017020374536514282, -0.023255806416273117, ...]

In a pipeline

from haystack import Document
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.embedders import HuggingFaceAPITextEmbedder, HuggingFaceAPIDocumentEmbedder
from haystack.components.writers import DocumentWriter
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever

document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")

documents = [Document(content="My name is Wolfgang and I live in Berlin"),
             Document(content="I saw a black horse running"),
             Document(content="Germany has many big cities")]

document_embedder = HuggingFaceAPIDocumentEmbedder(api_type="serverless_inference_api",
				                                           api_params={"model": "BAAI/bge-small-en-v1.5"})

indexing_pipeline = Pipeline()
indexing_pipeline.add_component("doc_embedder", document_embedder)
indexing_pipeline.add_component("doc_writer", DocumentWriter(document_store=document_store)
indexing_pipeline.connect("doc_embedder", "doc_writer")
indexing_pipeline.run({"doc_embedder": {"documents": documents}})

text_embedder = HuggingFaceAPITextEmbedder(api_type="serverless_inference_api",
                                           api_params={"model": "BAAI/bge-small-en-v1.5"})

query_pipeline = Pipeline()
query_pipeline.add_component("text_embedder", text_embedder)
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")

query = "Who lives in Berlin?"

result = query_pipeline.run({"text_embedder":{"text": query}})

print(result['retriever']['documents'][0])

# Document(id=..., content: 'My name is Wolfgang and I live in Berlin', ...)

Related Links

See the parameters details in our API reference: