DocumentationAPI Reference📓 Tutorials🧑‍🍳 Cookbook🤝 Integrations💜 Discord🎨 Studio
Documentation

AmazonBedrockTextEmbedder

This component computes embeddings for text (such as a query) using models through Amazon Bedrock API.

NameAmazonBedrockTextEmbedder
Sourcehttps://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/amazon_bedrock
Most common position in a pipelineBefore an embedding Retriever in a query/RAG pipeline
Mandatory input variables“text”: A string
Output variables“embedding”: A list of float numbers (vector)

Overview

Amazon Bedrock is a fully managed service that makes language models from leading AI startups and Amazon available for your use through a unified API.

Supported models are amazon.titan-embed-text-v1, cohere.embed-english-v3 and cohere.embed-multilingual-v3.

Use AmazonBedrockTextEmbedder to embed a simple string (such as a query) into a vector. Use the AmazonBedrockDocumentEmbedder to enrich the documents with the computed embedding, also known as vector.

Authentication

AmazonBedrockTextEmbedder uses AWS for authentication. You can either provide credentials as parameters directly to the component or use the AWS CLI and authenticate through your IAM. For more information on how to set up an IAM identity-based policy, see the official documentation.
To initialize AmazonBedrockTextEmbedder and authenticate by providing credentials, provide the model_name, as well as aws_access_key_idaws_secret_access_key, and aws_region_name. Other parameters are optional, you can check them out in our API reference.

Model-specific parameters

Even if Haystack provides a unified interface, each model offered by Bedrock can accept specific parameters. You can pass these parameters at initialization.

For example, the Cohere models support input_type and truncate, as seen in Bedrock documentation.

from haystack_integrations.components.embedders.amazon_bedrock import AmazonBedrockTextEmbedder

embedder = AmazonBedrockTextEmbedder(model="cohere.embed-english-v3",
                                     input_type="search_query",
                                     truncate="LEFT")

Usage

Installation

You need to install amazon-bedrock-haystack package to use the AmazonBedrockTextEmbedder:

pip install amazon-bedrock-haystack

On its own

Basic usage:

import os
from haystack_integrations.components.embedders.amazon_bedrock import AmazonBedrockTextEmbedder

os.environ["AWS_ACCESS_KEY_ID"] = "..."
os.environ["AWS_SECRET_ACCESS_KEY"] = "..."
os.environ["AWS_DEFAULT_REGION"] = "us-east-1" # just an example

text_to_embed = "I love pizza!"

text_embedder = AmazonBedrockTextEmbedder(model="cohere.embed-english-v3",
																					input_type="search_query"

print(text_embedder.run(text_to_embed))
# {'embedding': [-0.453125, 1.2236328, 2.0058594, 0.67871094...]}

In a pipeline

In a RAG pipeline:

from haystack import Document
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack_integrations.components.embedders.amazon_bedrock import (
    AmazonBedrockDocumentEmbedder,
    AmazonBedrockTextEmbedder,
)
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever

document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")

documents = [Document(content="My name is Wolfgang and I live in Berlin"),
             Document(content="I saw a black horse running"),
             Document(content="Germany has many big cities")]

document_embedder = AmazonBedrockDocumentEmbedder(model="cohere.embed-english-v3")
documents_with_embeddings = document_embedder.run(documents)['documents']
document_store.write_documents(documents_with_embeddings)

query_pipeline = Pipeline()
query_pipeline.add_component("text_embedder", AmazonBedrockTextEmbedder(model="cohere.embed-english-v3"))
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")

query = "Who lives in Berlin?"

result = query_pipeline.run({"text_embedder":{"text": query}})

print(result['retriever']['documents'][0])

# Document(id=..., content: 'My name is Wolfgang and I live in Berlin')

Related Links

Check out the API reference in the GitHub repo or in our docs: