CohereDocumentEmbedder
This component transforms a string into a vector that captures its semantics using a Cohere embedding model. When you perform embedding retrieval, you use this component to transform your query into a vector. Then, the embedding Retriever looks for similar or relevant documents.
The vectors computed by this component are necessary to perform embedding retrieval on a collection of documents. At retrieval time, the vector that represents the query is compared with those of the documents to find the most similar or relevant documents.
Name | CohereDocumentEmbedder |
Source | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/cohere |
Most common position in a pipeline | Before a DocumentWriter in an indexing pipeline |
Mandatory input variables | “documents”: A list of documents to be embedded |
Output variables | “documents”: A list of documents (enriched with embeddings) “meta”: A dictionary of metadata strings |
Overview
CohereDocumentEmbedder
enriches the metadata of documents with an embedding of their content. To embed a string, you should use the CohereTextEmbedder
.
The component supports the following Cohere models:
"embed-english-v3.0"
, "embed-english-light-v3.0"
, "embed-multilingual-v3.0"
,
"embed-multilingual-light-v3.0"
, "embed-english-v2.0"
, "embed-english-light-v2.0"
,
"embed-multilingual-v2.0"
. The default model is embed-english-v2.0
. This list of all supported models can be found in Cohere’s model documentation.
To start using this integration with Haystack, install it with:
pip install cohere-haystack
The component uses a COHERE_API_KEY
or CO_API_KEY
environment variable by default. Otherwise, you can pass an API key at initialization with api_key
:
embedder = CohereDocumentEmbedder(api_key=Secret.from_token("<your-api-key>"))
To get a Cohere API key, head over to https://cohere.com/.
Embedding Metadata
Text documents often come with a set of metadata. If they are distinctive and semantically meaningful, you can embed them along with the text of the document to improve retrieval.
You can do this by using the Document Embedder:
from haystack import Document
from cohere_haystack.embedders.document_embedder import CohereDocumentEmbedder
doc = Document(content="some text", meta={"title": "relevant title", "page number": 18})
embedder = CohereDocumentEmbedder(api_key=Secret.from_token("<your-api-key>", meta_fields_to_embed=["title"])
docs_w_embeddings = embedder.run(documents=[doc])["documents"]
Usage
On its own
Remember to set COHERE_API_KEY
as an environment variable first, or pass it in directly.
Here is how you can use the component on its own:
from haystack import Document
from haystack_integrations.components.embedders.cohere.document_embedder import CohereDocumentEmbedder
doc = Document(content="I love pizza!")
embedder = CohereDocumentEmbedder()
result = embedder.run([doc])
print(result['documents'][0].embedding)
# [-0.453125, 1.2236328, 2.0058594, 0.67871094...]
In a pipeline
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.writers import DocumentWriter
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
from haystack_integrations.components.embedders.cohere.document_embedder import CohereDocumentEmbedder
from haystack_integrations.components.embedders.cohere.text_embedder import CohereTextEmbedder
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
documents = [Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities")]
indexing_pipeline = Pipeline()
indexing_pipeline.add_component("embedder", CohereDocumentEmbedder())
indexing_pipeline.add_component("writer", DocumentWriter(document_store=document_store))
indexing_pipeline.connect("embedder", "writer")
indexing_pipeline.run({"embedder": {"documents": documents}})
query_pipeline = Pipeline()
query_pipeline.add_component("text_embedder", CohereTextEmbedder())
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
query = "Who lives in Berlin?"
result = query_pipeline.run({"text_embedder":{"text": query}})
print(result['retriever']['documents'][0])
# Document(id=..., text: 'My name is Wolfgang and I live in Berlin')
Updated 5 months ago
Check out the API reference in the GitHub repo or in our docs: