Ragas integration for Haystack
Module haystack_integrations.components.evaluators.ragas.evaluator
RagasEvaluator
A component that uses the Ragas framework to evaluate
inputs against a specific metric. Supported metrics are defined by RagasMetric
.
Usage example:
from haystack_integrations.components.evaluators.ragas import RagasEvaluator, RagasMetric
evaluator = RagasEvaluator(
metric=RagasMetric.CONTEXT_PRECISION,
)
output = evaluator.run(
questions=["Which is the most popular global sport?"],
contexts=[
[
"Football is undoubtedly the world's most popular sport with"
"major events like the FIFA World Cup and sports personalities"
"like Ronaldo and Messi, drawing a followership of more than 4"
"billion people."
]
],
ground_truths=["Football is the most popular sport with around 4 billion" "followers worldwide"],
)
print(output["results"])
RagasEvaluator.__init__
def __init__(metric: Union[str, RagasMetric],
metric_params: Optional[Dict[str, Any]] = None)
Construct a new Ragas evaluator.
Arguments:
metric
: The metric to use for evaluation.metric_params
: Parameters to pass to the metric's constructor. Refer to theRagasMetric
class for more details on required parameters.
RagasEvaluator.run
@component.output_types(results=List[List[Dict[str, Any]]])
def run(**inputs) -> Dict[str, Any]
Run the Ragas evaluator on the provided inputs.
Arguments:
inputs
: The inputs to evaluate. These are determined by the metric being calculated. SeeRagasMetric
for more information.
Returns:
A dictionary with a single results
entry that contains
a nested list of metric results. Each input can have one or more
results, depending on the metric. Each result is a dictionary
containing the following keys and values:
name
- The name of the metric.score
- The score of the metric.
RagasEvaluator.to_dict
def to_dict() -> Dict[str, Any]
Serializes the component to a dictionary.
Raises:
DeserializationError
: If the component cannot be serialized.
Returns:
Dictionary with serialized data.
RagasEvaluator.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "RagasEvaluator"
Deserializes the component from a dictionary.
Arguments:
data
: Dictionary to deserialize from.
Returns:
Deserialized component.
Module haystack_integrations.components.evaluators.ragas.metrics
RagasBaseEnum
Base functionality for a Ragas enum.
RagasBaseEnum.from_str
@classmethod
def from_str(cls, string: str) -> "RagasMetric"
Create a metric type from a string.
Arguments:
string
: The string to convert.
Returns:
The metric.
RagasMetric
Metrics supported by Ragas.
ANSWER_CORRECTNESS
Answer correctness.
Inputs - questions: List[str], responses: List[str], ground_truths: List[str]
Parameters - weights: Tuple[float, float]
FAITHFULNESS
Faithfulness.
Inputs - questions: List[str], contexts: List[List[str]], responses: List[str]
ANSWER_SIMILARITY
Answer similarity.
Inputs - responses: List[str], ground_truths: List[str]
Parameters - threshold: float
CONTEXT_PRECISION
Context precision.
Inputs - questions: List[str], contexts: List[List[str]], ground_truths: List[str]
CONTEXT_UTILIZATION
Context utilization.
Inputs - questions: List[str], contexts: List[List[str]], responses: List[str]
\
CONTEXT_RECALL
Context recall.
Inputs - questions: List[str], contexts: List[List[str]], ground_truths: List[str]
\
ASPECT_CRITIQUE
Aspect critique.
Inputs - questions: List[str], contexts: List[List[str]], responses: List[str]
Parameters - name: str, definition: str, strictness: int
ANSWER_RELEVANCY
Answer relevancy.
Inputs - questions: List[str], contexts: List[List[str]], responses: List[str]
Parameters - strictness: int
MetricResult
Result of a metric evaluation.
Arguments:
name
: The name of the metric.score
: The score of the metric.