Anthropic integration for Haystack
Module haystack_integrations.components.generators.anthropic.generator
AnthropicGenerator
@component
class AnthropicGenerator()
Enables text generation using Anthropic large language models (LLMs). It supports the Claude family of models.
Although Anthropic natively supports a much richer messaging API, we have intentionally simplified it in this component so that the main input/output interface is string-based. For more complete support, consider using the AnthropicChatGenerator.
from haystack_integrations.components.generators.anthropic import AnthropicGenerator
client = AnthropicGenerator(model="claude-3-sonnet-20240229")
response = client.run("What's Natural Language Processing? Be brief.")
print(response)
>>{'replies': ['Natural language processing (NLP) is a branch of artificial intelligence focused on enabling
>>computers to understand, interpret, and manipulate human language. The goal of NLP is to read, decipher,
>> understand, and make sense of the human languages in a manner that is valuable.'], 'meta': {'model':
>> 'claude-2.1', 'index': 0, 'finish_reason': 'end_turn', 'usage': {'input_tokens': 18, 'output_tokens': 58}}}
AnthropicGenerator.__init__
def __init__(api_key: Secret = Secret.from_env_var("ANTHROPIC_API_KEY"),
model: str = "claude-3-sonnet-20240229",
streaming_callback: Optional[Callable[[StreamingChunk],
None]] = None,
system_prompt: Optional[str] = None,
generation_kwargs: Optional[Dict[str, Any]] = None)
Initialize the AnthropicGenerator.
Arguments:
api_key
: The Anthropic API key.model
: The name of the Anthropic model to use.streaming_callback
: An optional callback function to handle streaming chunks.system_prompt
: An optional system prompt to use for generation.generation_kwargs
: Additional keyword arguments for generation.
AnthropicGenerator.to_dict
def to_dict() -> Dict[str, Any]
Serialize this component to a dictionary.
Returns:
The serialized component as a dictionary.
AnthropicGenerator.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "AnthropicGenerator"
Deserialize this component from a dictionary.
Arguments:
data
: The dictionary representation of this component.
Returns:
The deserialized component instance.
AnthropicGenerator.run
@component.output_types(replies=List[str], meta=List[Dict[str, Any]])
def run(prompt: str, generation_kwargs: Optional[Dict[str, Any]] = None)
Generate replies using the Anthropic API.
Arguments:
prompt
: The input prompt for generation.generation_kwargs
: Additional keyword arguments for generation.
Returns:
A dictionary containing:
replies
: A list of generated replies.meta
: A list of metadata dictionaries for each reply.
Module haystack_integrations.components.generators.anthropic.chat.chat_generator
AnthropicChatGenerator
@component
class AnthropicChatGenerator()
Enables text generation using Anthropic state-of-the-art Claude 3 family of large language models (LLMs) through the Anthropic messaging API.
It supports models like claude-3-5-sonnet
, claude-3-opus
, claude-3-sonnet
, and claude-3-haiku
,
accessed through the /v1/messages
API endpoint.
Users can pass any text generation parameters valid for the Anthropic messaging API directly to this component
via the generation_kwargs
parameter in __init__
or the generation_kwargs
parameter in the run
method.
For more details on the parameters supported by the Anthropic API, refer to the Anthropic Message API documentation.
For more details on supported models and their capabilities, refer to the Anthropic documentation.
Note: We only support text input/output modalities, and image modality is not supported in this version of AnthropicChatGenerator.
from haystack_integrations.components.generators.anthropic import AnthropicChatGenerator
from haystack.dataclasses import ChatMessage
messages = [ChatMessage.from_user("What's Natural Language Processing?")]
client = AnthropicChatGenerator(model="claude-3-5-sonnet-20240620")
response = client.run(messages)
print(response)
>> {'replies': [ChatMessage(content='Natural Language Processing (NLP) is a field of artificial intelligence that
>> focuses on enabling computers to understand, interpret, and generate human language. It involves developing
>> techniques and algorithms to analyze and process text or speech data, allowing machines to comprehend and
>> communicate in natural languages like English, Spanish, or Chinese.', role=<ChatRole.ASSISTANT: 'assistant'>,
>> name=None, meta={'model': 'claude-3-5-sonnet-20240620', 'index': 0, 'finish_reason': 'end_turn',
>> 'usage': {'input_tokens': 15, 'output_tokens': 64}})]}
AnthropicChatGenerator.__init__
def __init__(api_key: Secret = Secret.from_env_var("ANTHROPIC_API_KEY"),
model: str = "claude-3-5-sonnet-20240620",
streaming_callback: Optional[Callable[[StreamingChunk],
None]] = None,
generation_kwargs: Optional[Dict[str, Any]] = None,
ignore_tools_thinking_messages: bool = True)
Creates an instance of AnthropicChatGenerator.
Arguments:
api_key
: The Anthropic API keymodel
: The name of the model to use.streaming_callback
: A callback function that is called when a new token is received from the stream. The callback function accepts StreamingChunk as an argument.generation_kwargs
: Other parameters to use for the model. These parameters are all sent directly to the Anthropic endpoint. See Anthropic documentation for more details.
Supported generation_kwargs parameters are:
system
: The system message to be passed to the model.max_tokens
: The maximum number of tokens to generate.metadata
: A dictionary of metadata to be passed to the model.stop_sequences
: A list of strings that the model should stop generating at.temperature
: The temperature to use for sampling.top_p
: The top_p value to use for nucleus sampling.top_k
: The top_k value to use for top-k sampling.extra_headers
: A dictionary of extra headers to be passed to the model (i.e. for beta features).ignore_tools_thinking_messages
: Anthropic's approach to tools (function calling) resolution involves a "chain of thought" messages before returning the actual function names and parameters in a message. Ifignore_tools_thinking_messages
isTrue
, the generator will drop so-called thinking messages when tool use is detected. See the Anthropic tools for more details.
AnthropicChatGenerator.to_dict
def to_dict() -> Dict[str, Any]
Serialize this component to a dictionary.
Returns:
The serialized component as a dictionary.
AnthropicChatGenerator.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "AnthropicChatGenerator"
Deserialize this component from a dictionary.
Arguments:
data
: The dictionary representation of this component.
Returns:
The deserialized component instance.
AnthropicChatGenerator.run
@component.output_types(replies=List[ChatMessage])
def run(messages: List[ChatMessage],
generation_kwargs: Optional[Dict[str, Any]] = None)
Invoke the text generation inference based on the provided messages and generation parameters.
Arguments:
messages
: A list of ChatMessage instances representing the input messages.generation_kwargs
: Additional keyword arguments for text generation. These parameters will potentially override the parameters passed in the__init__
method. For more details on the parameters supported by the Anthropic API, refer to the Anthropic documentation.
Returns:
replies
: A list of ChatMessage instances representing the generated responses.
Module haystack_integrations.components.generators.anthropic.chat.vertex_chat_generator
AnthropicVertexChatGenerator
@component
class AnthropicVertexChatGenerator(AnthropicChatGenerator)
Enables text generation using state-of-the-art Claude 3 LLMs via the Anthropic Vertex AI API.
It supports models such as Claude 3.5 Sonnet
, Claude 3 Opus
, Claude 3 Sonnet
, and Claude 3 Haiku
,
accessible through the Vertex AI API endpoint.
To use AnthropicVertexChatGenerator, you must have a GCP project with Vertex AI enabled.
Additionally, ensure that the desired Anthropic model is activated in the Vertex AI Model Garden.
Before making requests, you may need to authenticate with GCP using gcloud auth login
.
For more details, refer to the [guide] (https://docs.anthropic.com/en/api/claude-on-vertex-ai).
Any valid text generation parameters for the Anthropic messaging API can be passed to
the AnthropicVertex API. Users can provide these parameters directly to the component via
the generation_kwargs
parameter in __init__
or the run
method.
For more details on the parameters supported by the Anthropic API, refer to the Anthropic Message API documentation.
from haystack_integrations.components.generators.anthropic import AnthropicVertexChatGenerator
from haystack.dataclasses import ChatMessage
messages = [ChatMessage.from_user("What's Natural Language Processing?")]
client = AnthropicVertexChatGenerator(
model="claude-3-sonnet@20240229",
project_id="your-project-id", region="your-region"
)
response = client.run(messages)
print(response)
>> {'replies': [ChatMessage(content='Natural Language Processing (NLP) is a field of artificial intelligence that
>> focuses on enabling computers to understand, interpret, and generate human language. It involves developing
>> techniques and algorithms to analyze and process text or speech data, allowing machines to comprehend and
>> communicate in natural languages like English, Spanish, or Chinese.', role=<ChatRole.ASSISTANT: 'assistant'>,
>> name=None, meta={'model': 'claude-3-sonnet@20240229', 'index': 0, 'finish_reason': 'end_turn',
>> 'usage': {'input_tokens': 15, 'output_tokens': 64}})]}
For more details on supported models and their capabilities, refer to the Anthropic documentation.
AnthropicVertexChatGenerator.__init__
def __init__(region: str,
project_id: str,
model: str = "claude-3-5-sonnet@20240620",
streaming_callback: Optional[Callable[[StreamingChunk],
None]] = None,
generation_kwargs: Optional[Dict[str, Any]] = None,
ignore_tools_thinking_messages: bool = True)
Creates an instance of AnthropicVertexChatGenerator.
Arguments:
region
: The region where the Anthropic model is deployed. Defaults to "us-central1".project_id
: The GCP project ID where the Anthropic model is deployed.model
: The name of the model to use.streaming_callback
: A callback function that is called when a new token is received from the stream. The callback function accepts StreamingChunk as an argument.generation_kwargs
: Other parameters to use for the model. These parameters are all sent directly to the AnthropicVertex endpoint. See Anthropic documentation for more details.
Supported generation_kwargs parameters are:
system
: The system message to be passed to the model.max_tokens
: The maximum number of tokens to generate.metadata
: A dictionary of metadata to be passed to the model.stop_sequences
: A list of strings that the model should stop generating at.temperature
: The temperature to use for sampling.top_p
: The top_p value to use for nucleus sampling.top_k
: The top_k value to use for top-k sampling.extra_headers
: A dictionary of extra headers to be passed to the model (i.e. for beta features).ignore_tools_thinking_messages
: Anthropic's approach to tools (function calling) resolution involves a "chain of thought" messages before returning the actual function names and parameters in a message. Ifignore_tools_thinking_messages
isTrue
, the generator will drop so-called thinking messages when tool use is detected. See the Anthropic tools for more details.
AnthropicVertexChatGenerator.to_dict
def to_dict() -> Dict[str, Any]
Serialize this component to a dictionary.
Returns:
The serialized component as a dictionary.
AnthropicVertexChatGenerator.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "AnthropicVertexChatGenerator"
Deserialize this component from a dictionary.
Arguments:
data
: The dictionary representation of this component.
Returns:
The deserialized component instance.