DocumentationAPI Reference📓 Tutorials🧑‍🍳 Cookbook🤝 Integrations💜 Discord🎨 Studio
Documentation

MarkdownToDocument

A component that converts Markdown files to Documents.

NameMarkdownToDocument
Folder Path/converters/
Position in a PipelineBefore PreProcessors, or right at the beginning of an indexing Pipeline
Inputs"sources": Markdown file paths or ByteStream objects
Outputs"documents": a list of Documents

Overview

The MarkdownToDocument component converts Markdown files into Documents. You can use it in an indexing Pipeline to index the contents of a Markdown file into a Document Store. It takes a list of file paths or ByteStream objects as input and outputs the converted result as a list of Documents. Optionally, you can attach metadata to the Documents through the meta input parameter.

When you initialize the component, you can optionally turn off progress bars by setting progress_bar to False. If you want to convert the contents of tables into a single line, you can enable that through the table_to_single_line parameter.

Usage

You need to install markdown-it-py and mdit_plain packages to use the MarkdownToDocument component:

pip install markdown-it-py mdit_plain

On its own

from haystack.components.converters import MarkdownToDocument

converter = MarkdownToDocument()

docs = converter.run(sources=Path("my_file.md"))

In a Pipeline

from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.converters import MarkdownToDocument
from haystack.components.preprocessors import DocumentCleaner
from haystack.components.preprocessors import DocumentSplitter
from haystack.components.writers import DocumentWriter

document_store = InMemoryDocumentStore()

pipeline = Pipeline()
pipeline.add_component("converter", MarkdownToDocument())
pipeline.add_component("cleaner", DocumentCleaner())
pipeline.add_component("splitter", DocumentSplitter(split_by="sentence", split_length=5))
pipeline.add_component("writer", DocumentWriter(document_store=document_store))
pipeline.connect("converter", "cleaner")
pipeline.connect("cleaner", "splitter")
pipeline.connect("splitter", "writer")

pipeline.run({"converter": {"sources": file_names}})

Related Links

See the parameters details in our API reference: