LocalWhisperTranscriber
Use LocalWhisperTranscriber
to transcribe audio files using OpenAI's Whisper model using your local installation of Whisper.
Name | LocalWhisperTranscriber |
Folder Path | /audio/ |
Most common Position in a Pipeline | As the first component in an indexing pipeline |
Mandatory Input variables | “audio_files”: List of paths or binary streams that you want to transcribe |
Output variables | “documents”: List of Documents |
Overview
The component also needs to know which Whisper model to work with. Specify this when initializing the component in the model
parameter.
See other optional parameters you can specify in our API documentation.
See the Whisper API documentation and the official Whisper GitHub repo for the supported audio formats and languages.
To work with the LocalWhisperTranscriber
, install torch and Whisper first with the following commands:
pip install transformers[torch]
pip install -U openai-whisper
Usage
On its own
Here’s an example of how to use LocalWhisperTranscriber
on its own:
from haystack.components.audio import LocalWhisperTranscriber
whisper = LocalWhisperTranscriber(model="small")
whisper.warm_up()
transcription = whisper.run(audio_files=["path/to/audio/file"])
In a Pipeline
This example shows an indexing Pipeline that takes audio files, transcribes them, and then stores the text as documents in a document store. “.”
needs to be a directory that contains only audio files.
from pathlib import Path
from haystack import Pipeline
from haystack.components.audio import LocalWhisperTranscriber
from haystack.components.preprocessors import DocumentSplitter, DocumentCleaner
from haystack.components.writers import DocumentWriter
from haystack.document_stores.in_memory import InMemoryDocumentStore
document_store = InMemoryDocumentStore()
p = Pipeline()
p.add_component(instance=LocalWhisperTranscriber(model="small"), name="transcriber")
p.add_component(instance=DocumentCleaner(), name="cleaner")
p.add_component(
instance=DocumentSplitter(split_by="sentence", split_length=10), name="splitter"
)
p.add_component(instance=DocumentWriter(document_store=document_store), name="writer")
p.connect("transcriber.documents", "cleaner.documents")
p.connect("cleaner.documents", "splitter.documents")
p.connect("splitter.documents", "writer.documents")
p.run({"transcriber": {"sources": list(Path(".").iterdir())}})
Updated 10 months ago