Google GenAI integration for Haystack
Module haystack_integrations.components.generators.google_genai.chat.chat_generator
GoogleGenAIChatGenerator
A component for generating chat completions using Google's Gemini models via the Google Gen AI SDK.
This component provides an interface to Google's Gemini models through the new google-genai SDK, supporting models like gemini-2.0-flash and other Gemini variants.
Authentication Examples
1. Gemini Developer API (API Key Authentication)
from haystack_integrations.components.generators.google_genai import GoogleGenAIChatGenerator
# export the environment variable (GOOGLE_API_KEY or GEMINI_API_KEY)
chat_generator = GoogleGenAIChatGenerator(model="gemini-2.0-flash")
**2. Vertex AI (Application Default Credentials)**
```python
from haystack_integrations.components.generators.google_genai import GoogleGenAIChatGenerator
__Using Application Default Credentials (requires gcloud auth setup)__
chat_generator = GoogleGenAIChatGenerator(
api="vertex",
vertex_ai_project="my-project",
vertex_ai_location="us-central1",
model="gemini-2.0-flash"
)
3. Vertex AI (API Key Authentication)
from haystack_integrations.components.generators.google_genai import GoogleGenAIChatGenerator
__export the environment variable (GOOGLE_API_KEY or GEMINI_API_KEY)__
chat_generator = GoogleGenAIChatGenerator(
api="vertex",
model="gemini-2.0-flash"
)
Usage example
from haystack.dataclasses.chat_message import ChatMessage
from haystack.tools import Tool, Toolset
from haystack_integrations.components.generators.google_genai import GoogleGenAIChatGenerator
__Initialize the chat generator__
chat_generator = GoogleGenAIChatGenerator(model="gemini-2.0-flash")
__Generate a response__
messages = [ChatMessage.from_user("Tell me about the future of AI")]
response = chat_generator.run(messages=messages)
print(response["replies"][0].text)
__Tool usage example__
def weather_function(city: str):
return f"The weather in {city} is sunny and 25°C"
weather_tool = Tool(
name="weather",
description="Get weather information for a city",
parameters={"type": "object", "properties": {"city": {"type": "string"}}, "required": ["city"]},
function=weather_function
)
__Can use either List[Tool] or Toolset__
chat_generator_with_tools = GoogleGenAIChatGenerator(
model="gemini-2.0-flash",
tools=[weather_tool] # or tools=Toolset([weather_tool])
)
messages = [ChatMessage.from_user("What's the weather in Paris?")]
response = chat_generator_with_tools.run(messages=messages)
GoogleGenAIChatGenerator.__init__
def __init__(*,
api_key: Secret = Secret.from_env_var(
["GOOGLE_API_KEY", "GEMINI_API_KEY"], strict=False),
api: Literal["gemini", "vertex"] = "gemini",
vertex_ai_project: Optional[str] = None,
vertex_ai_location: Optional[str] = None,
model: str = "gemini-2.0-flash",
generation_kwargs: Optional[Dict[str, Any]] = None,
safety_settings: Optional[List[Dict[str, Any]]] = None,
streaming_callback: Optional[StreamingCallbackT] = None,
tools: Optional[Union[List[Tool], Toolset]] = None)
Initialize a GoogleGenAIChatGenerator instance.
Arguments:
api_key
: Google API key, defaults to theGOOGLE_API_KEY
andGEMINI_API_KEY
environment variables. Not needed if using Vertex AI with Application Default Credentials. Go to https://aistudio.google.com/app/apikey for a Gemini API key. Go to https://cloud.google.com/vertex-ai/generative-ai/docs/start/api-keys for a Vertex AI API key.api
: Which API to use. Either "gemini" for the Gemini Developer API or "vertex" for Vertex AI.vertex_ai_project
: Google Cloud project ID for Vertex AI. Required when using Vertex AI with Application Default Credentials.vertex_ai_location
: Google Cloud location for Vertex AI (e.g., "us-central1", "europe-west1"). Required when using Vertex AI with Application Default Credentials.model
: Name of the model to use (e.g., "gemini-2.0-flash")generation_kwargs
: Configuration for generation (temperature, max_tokens, etc.)safety_settings
: Safety settings for content filteringstreaming_callback
: A callback function that is called when a new token is received from the stream.tools
: A list of Tool objects or a Toolset that the model can use. Each tool should have a unique name.
GoogleGenAIChatGenerator.to_dict
def to_dict() -> Dict[str, Any]
Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
GoogleGenAIChatGenerator.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "GoogleGenAIChatGenerator"
Deserializes the component from a dictionary.
Arguments:
data
: Dictionary to deserialize from.
Returns:
Deserialized component.
GoogleGenAIChatGenerator.run
@component.output_types(replies=List[ChatMessage])
def run(messages: List[ChatMessage],
generation_kwargs: Optional[Dict[str, Any]] = None,
safety_settings: Optional[List[Dict[str, Any]]] = None,
streaming_callback: Optional[StreamingCallbackT] = None,
tools: Optional[Union[List[Tool], Toolset]] = None) -> Dict[str, Any]
Run the Google Gen AI chat generator on the given input data.
Arguments:
messages
: A list of ChatMessage instances representing the input messages.generation_kwargs
: Configuration for generation. If provided, it will override the default config.safety_settings
: Safety settings for content filtering. If provided, it will override the default settings.streaming_callback
: A callback function that is called when a new token is received from the stream.tools
: A list of Tool objects or a Toolset that the model can use. If provided, it will override the tools set during initialization.
Raises:
RuntimeError
: If there is an error in the Google Gen AI chat generation.ValueError
: If a ChatMessage does not contain at least one of TextContent, ToolCall, or ToolCallResult or if the role in ChatMessage is different from User, System, Assistant.
Returns:
A dictionary with the following keys:
replies
: A list containing the generated ChatMessage responses.
GoogleGenAIChatGenerator.run_async
@component.output_types(replies=List[ChatMessage])
async def run_async(
messages: List[ChatMessage],
generation_kwargs: Optional[Dict[str, Any]] = None,
safety_settings: Optional[List[Dict[str, Any]]] = None,
streaming_callback: Optional[StreamingCallbackT] = None,
tools: Optional[Union[List[Tool], Toolset]] = None) -> Dict[str, Any]
Async version of the run method. Run the Google Gen AI chat generator on the given input data.
Arguments:
messages
: A list of ChatMessage instances representing the input messages.generation_kwargs
: Configuration for generation. If provided, it will override the default config.safety_settings
: Safety settings for content filtering. If provided, it will override the default settings.streaming_callback
: A callback function that is called when a new token is received from the stream.tools
: A list of Tool objects or a Toolset that the model can use. If provided, it will override the tools set during initialization.
Raises:
RuntimeError
: If there is an error in the Google Gen AI chat generation.ValueError
: If a ChatMessage does not contain at least one of TextContent, ToolCall, or ToolCallResult or if the role in ChatMessage is different from User, System, Assistant.
Returns:
A dictionary with the following keys:
replies
: A list containing the generated ChatMessage responses.
Module haystack_integrations.components.embedders.google_genai.document_embedder
GoogleGenAIDocumentEmbedder
Computes document embeddings using Google AI models.
Authentication examples
1. Gemini Developer API (API Key Authentication)
from haystack_integrations.components.embedders.google_genai import GoogleGenAIDocumentEmbedder
# export the environment variable (GOOGLE_API_KEY or GEMINI_API_KEY)
document_embedder = GoogleGenAIDocumentEmbedder(model="text-embedding-004")
**2. Vertex AI (Application Default Credentials)**
```python
from haystack_integrations.components.embedders.google_genai import GoogleGenAIDocumentEmbedder
__Using Application Default Credentials (requires gcloud auth setup)__
document_embedder = GoogleGenAIDocumentEmbedder(
api="vertex",
vertex_ai_project="my-project",
vertex_ai_location="us-central1",
model="text-embedding-004"
)
3. Vertex AI (API Key Authentication)
from haystack_integrations.components.embedders.google_genai import GoogleGenAIDocumentEmbedder
__export the environment variable (GOOGLE_API_KEY or GEMINI_API_KEY)__
document_embedder = GoogleGenAIDocumentEmbedder(
api="vertex",
model="text-embedding-004"
)
Usage example
from haystack import Document
from haystack_integrations.components.embedders.google_genai import GoogleGenAIDocumentEmbedder
doc = Document(content="I love pizza!")
document_embedder = GoogleGenAIDocumentEmbedder()
result = document_embedder.run([doc])
print(result['documents'][0].embedding)
__[0.017020374536514282, -0.023255806416273117, ...]__
GoogleGenAIDocumentEmbedder.__init__
def __init__(*,
api_key: Secret = Secret.from_env_var(
["GOOGLE_API_KEY", "GEMINI_API_KEY"], strict=False),
api: Literal["gemini", "vertex"] = "gemini",
vertex_ai_project: Optional[str] = None,
vertex_ai_location: Optional[str] = None,
model: str = "text-embedding-004",
prefix: str = "",
suffix: str = "",
batch_size: int = 32,
progress_bar: bool = True,
meta_fields_to_embed: Optional[List[str]] = None,
embedding_separator: str = "\n",
config: Optional[Dict[str, Any]] = None) -> None
Creates an GoogleGenAIDocumentEmbedder component.
Arguments:
api_key
: Google API key, defaults to theGOOGLE_API_KEY
andGEMINI_API_KEY
environment variables. Not needed if using Vertex AI with Application Default Credentials. Go to https://aistudio.google.com/app/apikey for a Gemini API key. Go to https://cloud.google.com/vertex-ai/generative-ai/docs/start/api-keys for a Vertex AI API key.api
: Which API to use. Either "gemini" for the Gemini Developer API or "vertex" for Vertex AI.vertex_ai_project
: Google Cloud project ID for Vertex AI. Required when using Vertex AI with Application Default Credentials.vertex_ai_location
: Google Cloud location for Vertex AI (e.g., "us-central1", "europe-west1"). Required when using Vertex AI with Application Default Credentials.model
: The name of the model to use for calculating embeddings. The default model istext-embedding-ada-002
.prefix
: A string to add at the beginning of each text.suffix
: A string to add at the end of each text.batch_size
: Number of documents to embed at once.progress_bar
: IfTrue
, shows a progress bar when running.meta_fields_to_embed
: List of metadata fields to embed along with the document text.embedding_separator
: Separator used to concatenate the metadata fields to the document text.config
: A dictionary of keyword arguments to configure embedding content configurationtypes.EmbedContentConfig
. If not specified, it defaults to {"task_type": "SEMANTIC_SIMILARITY"}. For more information, see the Google AI Task types.
GoogleGenAIDocumentEmbedder.to_dict
def to_dict() -> Dict[str, Any]
Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
GoogleGenAIDocumentEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "GoogleGenAIDocumentEmbedder"
Deserializes the component from a dictionary.
Arguments:
data
: Dictionary to deserialize from.
Returns:
Deserialized component.
GoogleGenAIDocumentEmbedder.run
@component.output_types(documents=List[Document], meta=Dict[str, Any])
def run(
documents: List[Document]
) -> Union[Dict[str, List[Document]], Dict[str, Any]]
Embeds a list of documents.
Arguments:
documents
: A list of documents to embed.
Returns:
A dictionary with the following keys:
documents
: A list of documents with embeddings.meta
: Information about the usage of the model.
GoogleGenAIDocumentEmbedder.run_async
@component.output_types(documents=List[Document], meta=Dict[str, Any])
async def run_async(
documents: List[Document]
) -> Union[Dict[str, List[Document]], Dict[str, Any]]
Embeds a list of documents asynchronously.
Arguments:
documents
: A list of documents to embed.
Returns:
A dictionary with the following keys:
documents
: A list of documents with embeddings.meta
: Information about the usage of the model.
Module haystack_integrations.components.embedders.google_genai.text_embedder
GoogleGenAITextEmbedder
Embeds strings using Google AI models.
You can use it to embed user query and send it to an embedding Retriever.
Authentication examples
1. Gemini Developer API (API Key Authentication)
from haystack_integrations.components.embedders.google_genai import GoogleGenAITextEmbedder
# export the environment variable (GOOGLE_API_KEY or GEMINI_API_KEY)
text_embedder = GoogleGenAITextEmbedder(model="text-embedding-004")
**2. Vertex AI (Application Default Credentials)**
```python
from haystack_integrations.components.embedders.google_genai import GoogleGenAITextEmbedder
__Using Application Default Credentials (requires gcloud auth setup)__
text_embedder = GoogleGenAITextEmbedder(
api="vertex",
vertex_ai_project="my-project",
vertex_ai_location="us-central1",
model="text-embedding-004"
)
3. Vertex AI (API Key Authentication)
from haystack_integrations.components.embedders.google_genai import GoogleGenAITextEmbedder
__export the environment variable (GOOGLE_API_KEY or GEMINI_API_KEY)__
text_embedder = GoogleGenAITextEmbedder(
api="vertex",
model="text-embedding-004"
)
Usage example
from haystack_integrations.components.embedders.google_genai import GoogleGenAITextEmbedder
text_to_embed = "I love pizza!"
text_embedder = GoogleGenAITextEmbedder()
print(text_embedder.run(text_to_embed))
__{'embedding': [0.017020374536514282, -0.023255806416273117, ...],__
__'meta': {'model': 'text-embedding-004-v2',__
__ 'usage': {'prompt_tokens': 4, 'total_tokens': 4}}}__
GoogleGenAITextEmbedder.__init__
def __init__(*,
api_key: Secret = Secret.from_env_var(
["GOOGLE_API_KEY", "GEMINI_API_KEY"], strict=False),
api: Literal["gemini", "vertex"] = "gemini",
vertex_ai_project: Optional[str] = None,
vertex_ai_location: Optional[str] = None,
model: str = "text-embedding-004",
prefix: str = "",
suffix: str = "",
config: Optional[Dict[str, Any]] = None) -> None
Creates an GoogleGenAITextEmbedder component.
Arguments:
api_key
: Google API key, defaults to theGOOGLE_API_KEY
andGEMINI_API_KEY
environment variables. Not needed if using Vertex AI with Application Default Credentials. Go to https://aistudio.google.com/app/apikey for a Gemini API key. Go to https://cloud.google.com/vertex-ai/generative-ai/docs/start/api-keys for a Vertex AI API key.api
: Which API to use. Either "gemini" for the Gemini Developer API or "vertex" for Vertex AI.vertex_ai_project
: Google Cloud project ID for Vertex AI. Required when using Vertex AI with Application Default Credentials.vertex_ai_location
: Google Cloud location for Vertex AI (e.g., "us-central1", "europe-west1"). Required when using Vertex AI with Application Default Credentials.model
: The name of the model to use for calculating embeddings. The default model istext-embedding-004
.prefix
: A string to add at the beginning of each text to embed.suffix
: A string to add at the end of each text to embed.config
: A dictionary of keyword arguments to configure embedding content configurationtypes.EmbedContentConfig
. If not specified, it defaults to {"task_type": "SEMANTIC_SIMILARITY"}. For more information, see the Google AI Task types.
GoogleGenAITextEmbedder.to_dict
def to_dict() -> Dict[str, Any]
Serializes the component to a dictionary.
Returns:
Dictionary with serialized data.
GoogleGenAITextEmbedder.from_dict
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "GoogleGenAITextEmbedder"
Deserializes the component from a dictionary.
Arguments:
data
: Dictionary to deserialize from.
Returns:
Deserialized component.
GoogleGenAITextEmbedder.run
@component.output_types(embedding=List[float], meta=Dict[str, Any])
def run(text: str) -> Union[Dict[str, List[float]], Dict[str, Any]]
Embeds a single string.
Arguments:
text
: Text to embed.
Returns:
A dictionary with the following keys:
embedding
: The embedding of the input text.meta
: Information about the usage of the model.
GoogleGenAITextEmbedder.run_async
@component.output_types(embedding=List[float], meta=Dict[str, Any])
async def run_async(
text: str) -> Union[Dict[str, List[float]], Dict[str, Any]]
Asynchronously embed a single string.
This is the asynchronous version of the run
method. It has the same parameters and return values
but can be used with await
in async code.
Arguments:
text
: Text to embed.
Returns:
A dictionary with the following keys:
embedding
: The embedding of the input text.meta
: Information about the usage of the model.