API Reference

Google AI integration for Haystack

Module haystack_integrations.components.generators.google_ai.gemini

GoogleAIGeminiGenerator

Generates text using multimodal Gemini models through Google AI Studio.

Usage example

from haystack.utils import Secret from haystack_integrations.components.generators.google_ai import GoogleAIGeminiGenerator gemini = GoogleAIGeminiGenerator(model="gemini-pro", api_key=Secret.from_token("<MY_API_KEY>")) res = gemini.run(parts = ["What is the most interesting thing you know?"]) for answer in res["replies"]: print(answer)

Multimodal example

import requests from haystack.utils import Secret from haystack.dataclasses.byte_stream import ByteStream from haystack_integrations.components.generators.google_ai import GoogleAIGeminiGenerator BASE_URL = ( "https://raw.githubusercontent.com/deepset-ai/haystack-core-integrations" "/main/integrations/google_ai/example_assets" ) URLS = [ f"{BASE_URL}/robot1.jpg", f"{BASE_URL}/robot2.jpg", f"{BASE_URL}/robot3.jpg", f"{BASE_URL}/robot4.jpg" ] images = [ ByteStream(data=requests.get(url).content, mime_type="image/jpeg") for url in URLS ] gemini = GoogleAIGeminiGenerator(model="gemini-1.5-flash", api_key=Secret.from_token("<MY_API_KEY>")) result = gemini.run(parts = ["What can you tell me about this robots?", *images]) for answer in result["replies"]: print(answer)

GoogleAIGeminiGenerator.__init__

def __init__(*, api_key: Secret = Secret.from_env_var("GOOGLE_API_KEY"), model: str = "gemini-1.5-flash", generation_config: Optional[Union[GenerationConfig, Dict[str, Any]]] = None, safety_settings: Optional[Dict[HarmCategory, HarmBlockThreshold]] = None, streaming_callback: Optional[Callable[[StreamingChunk], None]] = None)

Initializes a GoogleAIGeminiGenerator instance.

To get an API key, visit: https://makersuite.google.com

Arguments:

  • api_key: Google AI Studio API key.
  • model: Name of the model to use. For available models, see https://ai.google.dev/gemini-api/docs/models/gemini
  • generation_config: The generation configuration to use. This can either be a GenerationConfig object or a dictionary of parameters. For available parameters, see the GenerationConfig API reference.
  • safety_settings: The safety settings to use. A dictionary with HarmCategory as keys and HarmBlockThreshold as values. For more information, see the API reference
  • streaming_callback: A callback function that is called when a new token is received from the stream. The callback function accepts StreamingChunk as an argument.

GoogleAIGeminiGenerator.to_dict

def to_dict() -> Dict[str, Any]

Serializes the component to a dictionary.

Returns:

Dictionary with serialized data.

GoogleAIGeminiGenerator.from_dict

@classmethod def from_dict(cls, data: Dict[str, Any]) -> "GoogleAIGeminiGenerator"

Deserializes the component from a dictionary.

Arguments:

  • data: Dictionary to deserialize from.

Returns:

Deserialized component.

GoogleAIGeminiGenerator.run

@component.output_types(replies=List[str]) def run(parts: Variadic[Union[str, ByteStream, Part]], streaming_callback: Optional[Callable[[StreamingChunk], None]] = None)

Generates text based on the given input parts.

Arguments:

  • parts: A heterogeneous list of strings, ByteStream or Part objects.
  • streaming_callback: A callback function that is called when a new token is received from the stream.

Returns:

A dictionary containing the following key:

  • replies: A list of strings containing the generated responses.

Module haystack_integrations.components.generators.google_ai.chat.gemini

GoogleAIGeminiChatGenerator

Completes chats using Gemini models through Google AI Studio.

It uses the ChatMessage dataclass to interact with the model.

Usage example

from haystack.utils import Secret from haystack.dataclasses.chat_message import ChatMessage from haystack_integrations.components.generators.google_ai import GoogleAIGeminiChatGenerator gemini_chat = GoogleAIGeminiChatGenerator(model="gemini-1.5-flash", api_key=Secret.from_token("<MY_API_KEY>")) messages = [ChatMessage.from_user("What is the most interesting thing you know?")] res = gemini_chat.run(messages=messages) for reply in res["replies"]: print(reply.text) messages += res["replies"] + [ChatMessage.from_user("Tell me more about it")] res = gemini_chat.run(messages=messages) for reply in res["replies"]: print(reply.text)

With function calling:

from typing import Annotated from haystack.utils import Secret from haystack.dataclasses.chat_message import ChatMessage from haystack.components.tools import ToolInvoker from haystack.tools import create_tool_from_function from haystack_integrations.components.generators.google_ai import GoogleAIGeminiChatGenerator # example function to get the current weather def get_current_weather( location: Annotated[str, "The city for which to get the weather, e.g. 'San Francisco'"] = "Munich", unit: Annotated[str, "The unit for the temperature, e.g. 'celsius'"] = "celsius", ) -> str: return f"The weather in {location} is sunny. The temperature is 20 {unit}." tool = create_tool_from_function(get_current_weather) tool_invoker = ToolInvoker(tools=[tool]) gemini_chat = GoogleAIGeminiChatGenerator( model="gemini-2.0-flash-exp", api_key=Secret.from_token("<MY_API_KEY>"), tools=[tool], ) user_message = [ChatMessage.from_user("What is the temperature in celsius in Berlin?")] replies = gemini_chat.run(messages=user_message)["replies"] print(replies[0].tool_calls) # actually invoke the tool tool_messages = tool_invoker.run(messages=replies)["tool_messages"] messages = user_message + replies + tool_messages # transform the tool call result into a human readable message final_replies = gemini_chat.run(messages=messages)["replies"] print(final_replies[0].text)

GoogleAIGeminiChatGenerator.__init__

def __init__(*, api_key: Secret = Secret.from_env_var("GOOGLE_API_KEY"), model: str = "gemini-1.5-flash", generation_config: Optional[Union[GenerationConfig, Dict[str, Any]]] = None, safety_settings: Optional[Dict[HarmCategory, HarmBlockThreshold]] = None, tools: Optional[List[Tool]] = None, tool_config: Optional[content_types.ToolConfigDict] = None, streaming_callback: Optional[Callable[[StreamingChunk], None]] = None)

Initializes a GoogleAIGeminiChatGenerator instance.

To get an API key, visit: https://aistudio.google.com/

Arguments:

  • api_key: Google AI Studio API key. To get a key, see Google AI Studio.
  • model: Name of the model to use. For available models, see https://ai.google.dev/gemini-api/docs/models/gemini.
  • generation_config: The generation configuration to use. This can either be a GenerationConfig object or a dictionary of parameters. For available parameters, see the API reference.
  • safety_settings: The safety settings to use. A dictionary with HarmCategory as keys and HarmBlockThreshold as values. For more information, see the API reference
  • tools: A list of tools for which the model can prepare calls.
  • tool_config: The tool config to use. See the documentation for ToolConfig.
  • streaming_callback: A callback function that is called when a new token is received from the stream. The callback function accepts StreamingChunk as an argument.

GoogleAIGeminiChatGenerator.to_dict

def to_dict() -> Dict[str, Any]

Serializes the component to a dictionary.

Returns:

Dictionary with serialized data.

GoogleAIGeminiChatGenerator.from_dict

@classmethod def from_dict(cls, data: Dict[str, Any]) -> "GoogleAIGeminiChatGenerator"

Deserializes the component from a dictionary.

Arguments:

  • data: Dictionary to deserialize from.

Returns:

Deserialized component.

GoogleAIGeminiChatGenerator.run

@component.output_types(replies=List[ChatMessage]) def run(messages: List[ChatMessage], streaming_callback: Optional[Callable[[StreamingChunk], None]] = None, *, tools: Optional[List[Tool]] = None)

Generates text based on the provided messages.

Arguments:

  • messages: A list of ChatMessage instances, representing the input messages.
  • streaming_callback: A callback function that is called when a new token is received from the stream.
  • tools: A list of tools for which the model can prepare calls. If set, it will override the tools parameter set during component initialization.

Returns:

A dictionary containing the following key:

  • replies: A list containing the generated responses as ChatMessage instances.