JinaDocumentImageEmbedder
JinaDocumentImageEmbedder
computes the image embeddings of a list of documents and stores the obtained vectors in the embedding field of each document. It uses Jina embedding models with the ability to embed text and images into the same vector space.
Most common position in a pipeline | Before a DocumentWriter in an indexing pipeline |
Mandatory init variables | "api_key": The Jina API key. Can be set with JINA_API_KEY env var. |
Mandatory run variables | "documents": A list of documents, with a meta field containing an image file path |
Output variables | "documents": A list of documents (enriched with embeddings) |
API reference | Jina |
GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/jina |
Overview
JinaDocumentImageEmbedder
expects a list of documents containing an image or a PDF file path in a meta field. The meta field can be specified with the file_path_meta_field
init parameter of this component.
The embedder efficiently loads the images, computes the embeddings using a Jina model, and stores each of them in the embedding
field of the document.
JinaDocumentImageEmbedder
is commonly used in indexing pipelines. At retrieval time, you need to use the same model with a JinaTextEmbedder
to embed the query, before using an Embedding Retriever.
This component is compatible with Jina multimodal embedding models:
jina-clip-v1
jina-clip-v2
(default)jina-embeddings-v4
(non-commercial research only)
Installation
To start using this integration with Haystack, install the package with:
pip install jina-haystack
Authentication
The component uses a JINA_API_KEY
environment variable by default. Otherwise, you can pass an API key at initialization with a Secret and Secret.from_token
method:
embedder = JinaDocumentImageEmbedder(api_key=Secret.from_token("<your-api-key>"))
To get a Cohere API key, head over to https://jina.ai/embeddings/.
Usage
On its own
Remember to set JINA_API_KEY
as an environment variable first.
from haystack import Document
from haystack_integrations.components.embedders.jina import JinaDocumentImageEmbedder
embedder = JinaDocumentImageEmbedder(model="jina-clip-v2")
embedder.warm_up()
documents = [
Document(content="A photo of a cat", meta={"file_path": "cat.jpg"}),
Document(content="A photo of a dog", meta={"file_path": "dog.jpg"}),
]
result = embedder.run(documents=documents)
documents_with_embeddings = result["documents"]
print(documents_with_embeddings)
# [Document(id=...,
# content='A photo of a cat',
# meta={'file_path': 'cat.jpg',
# 'embedding_source': {'type': 'image', 'file_path_meta_field': 'file_path'}},
# embedding=vector of size 1024),
# ...]
In a pipeline
In this example, we can see an indexing pipeline with 3 components:
ImageFileToDocument
Converter that creates empty documents with a reference to an image in themeta.file_path
field.JinaDocumentImageEmbedder
that loads the images, computes embeddings and store them in documents. Here, we set theimage_size
parameter to resize the image to fit within the specified dimensions while maintaining aspect ratio. This reduces API usage.DocumentWriter
that writes the documents in theInMemoryDocumentStore
.
There is also a multimodal retrieval pipeline, composed of a JinaTextEmbedder
(using the same model as before) and an InMemoryEmbeddingRetriever
.
from haystack import Pipeline
from haystack.components.converters.image import ImageFileToDocument
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
from haystack.components.writers import DocumentWriter
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack_integrations.components.embedders.jina import JinaDocumentImageEmbedder, JinaTextEmbedder
document_store = InMemoryDocumentStore()
# Indexing pipeline
indexing_pipeline = Pipeline()
indexing_pipeline.add_component("image_converter", ImageFileToDocument())
indexing_pipeline.add_component(
"embedder",
JinaDocumentImageEmbedder(model="jina-clip-v2", image_size=(200, 200))
)
indexing_pipeline.add_component(
"writer", DocumentWriter(document_store=document_store)
)
indexing_pipeline.connect("image_converter", "embedder")
indexing_pipeline.connect("embedder", "writer")
indexing_pipeline.run(data={"image_converter": {"sources": ["dog.jpg", "cat.jpg"]}})
# Multimodal retrieval pipeline
retrieval_pipeline = Pipeline()
retrieval_pipeline.add_component(
"embedder",
JinaTextEmbedder(model="jina-clip-v2")
)
retrieval_pipeline.add_component(
"retriever",
InMemoryEmbeddingRetriever(document_store=document_store, top_k=2)
)
retrieval_pipeline.connect("embedder.embedding", "retriever.query_embedding")
result = retrieval_pipeline.run(data={"text": "man's best friend"})
print(result)
# {
# 'retriever': {
# 'documents': [
# Document(
# id=0c96...,
# meta={
# 'file_path': 'dog.jpg',
# 'embedding_source': {
# 'type': 'image',
# 'file_path_meta_field': 'file_path'
# }
# },
# score=0.246
# ),
# Document(
# id=5e76...,
# meta={
# 'file_path': 'cat.jpg',
# 'embedding_source': {
# 'type': 'image',
# 'file_path_meta_field': 'file_path'
# }
# },
# score=0.199
# )
# ]
# }
# }
Additional References
📓 Tutorial: Creating Vision+Text RAG Pipelines
Updated 1 day ago