Skip to main content
Version: 2.18

NvidiaTextEmbedder

This component transforms a string into a vector that captures its semantics using Nvidia-hosted models.

Most common position in a pipelineBefore an embedding Retriever in a query/RAG pipeline
Mandatory init variables"api_key": API key for the NVIDIA NIM. Can be set with NVIDIA_API_KEY env var.
Mandatory run variables“text”: A string
Output variables“embedding”: A list of float numbers (vectors)

“meta”: A dictionary of metadata strings
API referenceNvidia
GitHub linkhttps://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/nvidia

Overview​

NvidiaTextEmbedder embeds a simple string (such as a query) into a vector.

It can be used with self-hosted models with NVIDIA NIM or models hosted on the NVIDIA API catalog.

To embed a list of documents, use the NvidiaDocumentEmbedder, which enriches the document with the computed embedding, also known as vector.

Usage​

To start using NvidiaTextEmbedder, first, install the nvidia-haystack package:

shell
pip install nvidia-haystack

You can use the NvidiaTextEmbedder with all the embedder models available on the NVIDIA API catalog or using a model deployed with NVIDIA NIM. Follow the Deploying Text Embedding Models guide to learn how to deploy the model you want on your infrastructure.

On its own​

To use LLMs from the NVIDIA API catalog, you need to specify the correct api_url and your API key. You can get your API key directly from the catalog website.

The NvidiaTextEmbedder needs an Nvidia API key to work. It uses the NVIDIA_API_KEY environment variable by default. Otherwise, you can pass an API key at initialization with api_key, as in the following example.

python
from haystack.utils.auth import Secret
from haystack_integrations.components.embedders.nvidia import NvidiaTextEmbedder

embedder = NvidiaTextEmbedder(
model="nvidia/nv-embedqa-e5-v5",
api_url="https://integrate.api.nvidia.com/v1",
api_key=Secret.from_token("<your-api-key>"),
)
embedder.warm_up()

result = embedder.run("A transformer is a deep learning architecture")
print(result["embedding"])
print(result["meta"])

To use a locally deployed model, you need to set the api_url to your localhost and unset your api_key.

python
from haystack_integrations.components.embedders.nvidia import NvidiaTextEmbedder

embedder = NvidiaTextEmbedder(
model="nvidia/nv-embedqa-e5-v5",
api_url="http://0.0.0.0:9999/v1",
api_key=None,
)
embedder.warm_up()

result = embedder.run("A transformer is a deep learning architecture")
print(result["embedding"])
print(result["meta"])

In a pipeline​

Here's an example of a RAG pipeline:

python
from haystack import Pipeline, Document
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack_integrations.components.embedders.nvidia import NvidiaTextEmbedder, NvidiaDocumentEmbedder
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever

document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")

documents = [Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities")]

indexing_pipeline = Pipeline()
indexing_pipeline.add_component("embedder", NvidiaDocumentEmbedder(
model="nvidia/nv-embedqa-e5-v5",
api_url="https://integrate.api.nvidia.com/v1",
api_key=Secret.from_token("<your-api-key>"),
))
indexing_pipeline.add_component("writer", DocumentWriter(document_store=document_store))
indexing_pipeline.connect("embedder", "writer")

indexing_pipeline.run({"embedder": {"documents": documents}})

query_pipeline = Pipeline()
query_pipeline.add_component("text_embedder", NvidiaTextEmbedder(
model="NV-Embed-QA",
api_url="https://integrate.api.nvidia.com/v1",
api_key=Secret.from_token("<your-api-key>"),
))
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")

query = "Who lives in Berlin?"

result = query_pipeline.run({"text_embedder":{"text": query}})

print(result['retriever']['documents'][0])

Additional References​

🧑‍🍳 Cookbook: Haystack RAG Pipeline with Self-Deployed AI models using NVIDIA NIMs